
Supplementary Material: Generating function
method for calculating the potentials of
inhomogeneous polyhedra

1 DERIVATION OF THE CONNECTION BETWEEN THE POTENTIAL AND THE
GENERATING FUNCTION

Let us derive Eq. (6) that expresses potential ϕ(R) via generating function G(R,k). We start from the
Maclaurin series for G(R,k), Eq. (7), where

G(0)(R) =
∫∫∫
V

1
|r−R| d

3r,

G
(1)
α (R) =

∫∫∫
V

rα−Rα
|r−R| d3r,

G
(2)
αβ(R) = 1

2!

∫∫∫
V

(rα−Rα)(rβ−Rβ)
|r−R| d3r,

and so on. It is evident from Eq. (7) that

G

(
R,

∂

∂R

)
ρ(R) = G(0)(R)ρ(R) +G

(1)
α (R)ρ,α(R) +G

(2)
αβ(R)ρ,αβ(R) + . . . , (S1)

where we use a shorthand notation ρ,α(R) = ∂ρ(R)/∂Rα, ρ,αβ(R) = ∂2ρ(R)/∂Rα∂Rβ , and so on.
Substituting the expressions for G(0)(R), G(1)

α (R), etc. into Eq. (S1), one can obtain

G

(
R,

∂

∂R

)
ρ(R) =

∫∫∫
V

[
ρ(R)+ρ,α(R) (rα−Rα)+

1

2!
ρ,αβ(R) (rα−Rα)(rβ−Rβ)+. . .

]
d3r

|r−R|

=

∫∫∫
V

ρ(r)
d3r

|r−R|
= ϕ(R), (S2)

Q. E. D.

2 EXPRESSING THE GENERATING FUNCTION VIA CONTRIBUTIONS OF FACES,
EDGES AND VERTICES

For simplicity, in this Section we consider the generating function at R = 0. Let us denote it as G0(k):

G0(k) = G(0,k) =

∫∫∫
V

ek·r

|r|
d3r. (S3)

This does not lead to any loss of generality, because equality R = 0 just means that we choose point R as
an origin of coordinates. In the end of this Section, we will return to the generating function in its original
form, Eq. (5).
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Supplementary Material: Generating function method

We will perform a transformation of the expression for G0(k) in four steps. The first step consists in
reducing the volume integral in Eq. (S3) to a surface integral via Gauss’s theorem. For this purpose we find
such a vector function u(r) that

∇ · u =
ek·r

|r|
. (S4)

It is convenient to choose this function in the form

u(r) =
r

|r|
f(k · r). (S5)

Then it follows from Eq. (S4) that

f(k · r) =
ek·r(k · r− 1) + 1

(k · r)2
. (S6)

Here the last term in the numerator is a constant of integration, its value is chosen such that function f
remains finite at k = 0. Applying Gauss’s theorem to the r.h.s. of Eq. (S3), one can obtain a representation
of G0 as a two-dimensional integral over the surface ∂V of the body:

G0(k) =

∫∫
∂V

n · r
|r|

f(k · r) dS, (S7)

where n is the outward normal to the surface (a unit vector, see Fig. S1), and dS is a surface element. Since
the surface is a polyhedron, the integral in Eq. (S7) is a sum of contributions of polyhedron’s faces. Let us
denote these contributions as Gf , where subscript f labels a face. Therefore

G0(k) =
∑
f

Gf (k). (S8)

The second step is a transformation of quantity Gf using a two-dimensional version of Gauss’s theorem
(or, equivalently, Stokes’ theorem). It is convenient to choose the coordinate system Kf such that axis z
is directed perpendicular to face f , along the outward normal to face f , and axis y is directed along the
projection of vector k to face f (Fig. S1a). Then, n · r = z, and

k · r = k‖y + kzz, (S9)

where k‖ is the absolute value of the projection of k to face f . In system Kf , expression for Gf acquires
the form

Gf =

∫∫
face f

z f(k‖y + kzz)

r
dx dy, (S10)

where r =
√
x2 + y2 + z2. Let us define a vector v(x, y) on face f as follows:

vx =
x

r
zβ(y), vy =

y

r
zβ(y), (S11)
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Supplementary Material: Generating function method

Figure S1. (a) Coordinate systemKf associated with face f . In this system, axis z is directed perpendicular
to face f , along vector n. Axis y lies in the plane spanned by vectors n and k. Unit vector n is the outward
normal to face f . The origin of coordinates is denoted as O. (b) Unit vector b that appears in Eq. (S14).
This vector lies in the plane of face f and is directed out of this face, perpendicular to its boundary.

where function β(y) obeys equation

d(yβ)

dy
= f(k‖y + kzz). (S12)

Then
dvx
dx

+
dvy
dy

=
z f(k‖y + kzz)

r
+
z3β(y)

r3
. (S13)

Expressing the integrand of the r.h.s of Eq. (S10) via Eq. (S13) and applying the two-dimensional Gauss’s
theorem, we obtain

Gf = −
∫∫

face f

z3β(y)

r3
dx dy +

∮
∂f

b · v dl, (S14)

where ∂f stands for the boundary of face f ; b is the outward normal vector to the boundary of face f lying
in the plane of this face (see Fig. S1b); and dl is the line element of the face perimeter.

The third step aims at expressing the quantity Gf through a line integral and a solid angle. Again, we use
the two-dimensional Gauss’s theorem for this. Let us define vector function w(x, y) on face f :

wx =
x

r
γ(y), wy =

k‖λ

r
, (S15)

where

γ(y) =
β(y) + k‖λy + µ

y2 + z2
, (S16)

and quantities λ and µ do not depend on coordinates x and y. We will choose the values of λ and µ in such
a way that function γ(y) has no poles. It follows from Eqs. (S15) and (S16) that

dwx
dx

+
dwy
dy

=
β(y) + µ

r3
. (S17)
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Deriving from here the integrand z3β(y)/r3 of the first term in the r.h.s. of Eq. (S14), taking into account
that z is constant on the face, and applying Gauss’s theorem, one can obtain the following representation
for Gf :

Gf =

∫∫
face f

z3µ

r3
dx dy +

∮
∂f

b · (v − z3w) dl. (S18)

The first integral here is related to the solid angle Ωf subtended by face f at the origin of coordinates:

Ωf = −zf
∫∫

face f

1

r3
dx dy, (S19)

where zf = n · r is z-coordinate of face f . It is evident from comparison of the two latter equations, that
the first integral in Eq. (S18) is equal to −z2fµΩf . The second integral is a sum of contributions of edges
surrounding face f , since the boundary ∂f consists of these edges. Let us denote the contribution of edge e
to Gf as Lfe. Therefore, Eq. (S18) takes on the following form:

Gf = −z2fµΩf +
∑
e

Lfe, (S20)

where summation is over edges adjacent to face f , and

Lfe =

∫
edge e

b · (v − z3w) dl. (S21)

Equations (S20) and (S21) contain functions β(y), γ(y) and constants λ, µ that are not yet specified. Let
us calculate them. The solution of Eq. (S12), that remains finite at y = 0, is

β(y) =
1

k‖y

(
ek‖y+kzz − 1

k‖y + kzz
− ekzz − 1

kzz

)
. (S22)

In order to get rid of poles of function γ(y), it is necessary that the numerator of the r.h.s of Eq. (S16) is
equal to zero at y = ±iz:

β(±iz)± ik‖λz + µ = 0, (S23)

whence

λ = −β(iz)− β(−iz)

2ik‖z
(S24)

and

µ = −β(iz) + β(−iz)

2
. (S25)

Function γ(y) is now fully defined by Eq. (S16), where β(y), λ and µ are to be substituted from Eqs. (S22),
(S24) and (S25).

The last step is the calculation of line integrals Lfe in Eq. (S21). For convenience, we find expressions
for these integrals in a different coordinate system K̃fe associated with face f and edge e, see Fig. S2. In
this system, axis x is directed along edge e, axes y and z are directed along vectors b and n defined above.
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Figure S2. Coordinate system K̃fe associated with face f and edge e. In this system, axis z is directed
perpendicular to face f . Axis y is directed parallel to face f and perpendicular to edge e. Axis x is directed
along edge e. Unit vectors n and b show directions of axes z and y, correspondingly. y(Kf ) is axis y in
coordinate system Kf . The origin of coordinates is denoted as O.

In the transition from Kf to K̃fe, the argument y of functions β(y) and γ(y) transforms as

y →
kxx+ kyy

k‖
, (S26)

and the integrand of Eq. (S21) is expressed in system K̃fe as follows (see Supplemental Section 5):

b · (v − z3w) =

−z3kyλ+ yzβ +
z3kx(kyx−kxy)

k2‖
γ√

x2 + y2 + z2
. (S27)

The numerator of the r.h.s of the latter equation is a function of coordinate x along the edge. Denoting this
function as F(x), one can obtain from Eq. (S21) that

Lfe =

x2∫
x1

F(x)√
x2 + r2⊥

dx, (S28)

where x1 and x2 are coordinates of the end points of edge e, and r2⊥ ≡ y2 + z2 is the squared distance from
the coordinate origin to the line that contains edge e. Since function F(x) is entire (i. e. has no singularities
at finite x), there is a Taylor series expansion:

F(x) = F0 + F1x+ F2x
2 + . . . (S29)
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Based on this expansion, one can reduce the integral in Eq. (S28) to a much simpler integral

Le =

x2∫
x1

dx√
x2 + r2⊥

. (S30)

Quantity Le can be understood as a potential at the origin of coordinates, created by uniformly charged
edge e with the unit linear charge density. Using identities from Nenashev and Dvurechenskii (2017)

x2∫
x1

xn√
x2 + r2⊥

dx = −n− 1

n
r2⊥

x2∫
x1

xn−2√
x2 + r2⊥

dx+
xn−12

n

√
x22 + r2⊥ −

xn−11

n

√
x21 + r2⊥, (S31)

where n ≥ 2, and
x2∫
x1

x√
x2 + r2⊥

dx =
√
x22 + r2⊥ −

√
x21 + r2⊥, (S32)

one can obtain (see details in Supplemental Section 6) that

Lfe = BLe + C(x2)
√
x22 + r2⊥ − C(x1)

√
x21 + r2⊥, (S33)

where

B =
∞∑
n=0

F2n(−r2⊥)n
(2n− 1)!!

(2n)!!
, (S34)

C(x) =
∞∑
m=0

∞∑
n=0

Fm+2n+1x
m(−r2⊥)n

(m+ 2n)!!(m− 1)!!

m!!(m+ 2n+ 1)!!
. (S35)

Note that factors
√
x21 + r2⊥ and

√
x22 + r2⊥ in Eq. (S33) are distances from the origin of coordinates to the

ends of edge e.

Combining equations (S8), (S20) and (S33), one can get the following expression for generating function
G0(k):

G0(k) =
∑
f

Af (k) Ωf +
∑
(f,e)

Bfe(k)Le +
∑

(f,e,v)

Cfev(k) |rv|. (S36)

Here, the first sum of the r.h.s. is over faces of the polyhedron. The second sum is over all pairs (f, e),
where f is a face, and e is an edge adjacent to face f . Similarly, the third sum is over all triples (f, e, v),
where f is a face, e is an edge adjacent to face f , and v is one of two vertices that are connected by edge e.
Af stands for −z2fµ, where µ is defined by Eq. (S25); Bfe is defined by Eq. (S34); Cfev is either C(x2) or
−C(x1), where function C(x) is introduced in Eq. (S35); and rv is the radius-vector of vertex v.

It is natural to interpret Eq. (S36) as follows: generating function G0 is a sum of contributions of all
faces, edges, and vertices of the polyhedral body. The contribution of face f contains factor Ωf , a solid
angle subtended by this face at the origin of coordinates. The contribution of edge e contains factor Le that
has the meaning of potential of uniformly charged edge e at the origin. And the contribution of vertex v
contains the distance |rv| between the vertex and the origin.
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Finally, we generalize these results to function G(R,k). The generalization is rather straightforward: we
just replace the origin of coordinates with point R in Eq. (S36):

G(R,k) =
∑
f

Af (R,k) Ωf (R) +
∑
(f,e)

Bfe(R,k)Le(R) +
∑

(f,e,v)

Cfev(R,k) |rv −R|. (S37)

Ωf (R) here is the solid angle subtended by face f at point R, and Le(R) is the potential of uniformly
charged edge e at point R. Quantities Af , Bfe and Cfev become dependent on R, since coordinates x1,
x2, y, z are counted from point R.

Functions Af = −z2µ for different faces f can be reduced to one and the same function. Indeed, Af
depends on three parameters: coordinate z and components kz, k‖ of vector k. One can express these
parameters through the outward normal vector nf to face f and a radius-vector rf of an arbitrarily chosen
point on face f (see Fig. 2):

z = nf · (rf −R), (S38)

kz = nf · k, (S39)

k2‖ = k2 − k2z . (S40)

Therefore
Af (R,k) = A(rf −R,k,nf ), (S41)

where function A is universal, i. e. is the same for all faces and even for all polyhedra. Similarly, Bfe
determines by coordinates y, z and components kx, ky, kz of vector k. These parameters, in their turn,
depend on the outward normal vector nf to face f , the outward normal vector bfe to edge e lying in the
plane of face f , and a radius-vector re of an arbitrarily chosen point on edge e (see Fig. 2):

y = bfe · (re −R), (S42)

z = nf · (re −R), (S43)

ky = bfe · k, (S44)

kz = nf · k, (S45)

k2x = k2 − k2y − k2z . (S46)

One can thus reduce all functions Bfe to the same universal function B:

Bfe(R,k) = B(re −R,k,nf ,bfe). (S47)

In the same manner, coordinates x, y, z and components kx, ky, kz, that appear in function Cfev, can be
expressed via normal vectors nf and bfe, the unit vector lev directed along edge e toward vertex v from
the opposite vertex, and radius-vector rv of vertex v (see Fig. 2):

x = lev · (rv −R), kx = lev · k, (S48)

y = bfe · (rv −R), ky = bfe · k, (S49)

z = nf · (rv −R), kz = nf · k. (S50)
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This allows us to reduce all functions Cfev to one universal function C:

Cfev(R,k) = C(rv −R,k,nf ,bfe, lev). (S51)

Substitution of expressions for Af , Bfe, and Cfev from Eqs. (S41), (S47) and (S51) into Eq. (S37) gives
rise to equation (12) of the main paper.

3 DERIVATION OF SERIES REPRESENTATIONS (13) – (15) FOR FUNCTIONS A, B
AND C

According to the results of Supplemental Section 2,

A = −z2µ = z2
β(iz)− β(−iz)

2
, (S52)

where function β is defined by Eq. (S22). Introducing function ψ(t)

ψ(t) =
et − 1

t
=
∞∑
q=0

tq

(q + 1)!
, (S53)

one can express function β as follows:

β(ξ) =
ψ(k‖ξ + kzz)− ψ(kzz)

k‖ξ
=
∞∑
m=0

(k‖ξ)
m

(m+ 1)!

dm+1ψ(kzz)

d(kzz)m+1
=
∞∑
m=0

∞∑
q=0

(k‖ξ)
m

(m+ 1)!

(kzz)q

q!(m+ q + 2)
.

(S54)

Inserting this representation for β into Eq. (S52), one can see that only even values of m remain. Denoting
m = 2p, one obtains

A = z2
∞∑
p=0

∞∑
q=0

(−k2‖z
2)p

(2p+ 1)!

(kzz)q

q!(2p+ q + 2)
, (S55)

that is identical to Eq. (13) up to relabeling of mute variables. Hence, Eq. (13) is now justified.

In order to derive the formulas for B and C, we recall that, according to the results of Section 2,

B =
∞∑
n=0

F2n(−r2⊥)n
(2n− 1)!!

(2n)!!
, (S56)

C =
∞∑
m=0

∞∑
n=0

Fm+2n+1x
m(−r2⊥)n

(m+ 2n)!!(m− 1)!!

m!!(m+ 2n+ 1)!!
, (S57)

whereF0,F1,F2, . . . are coefficients of series expansion (S29) of functionF(x), andF(x) is the numerator
of the right-hand side of Eq. (S27). One can write this numerator as follows:

F(x) = F (1) + F (2)(x) + F (3)(x) + F (4)(x) (S58)

8



Supplementary Material: Generating function method

with

F (1) = −z3kyλ, (S59)

F (2)(x) = yz β

(
kxx+ kyy

k‖

)
, (S60)

F (3)(x) = −z
3k2xy

k2‖
γ

(
kxx+ kyy

k‖

)
, (S61)

F (4)(x) =
z3kxky

k2‖
xγ

(
kxx+ kyy

k‖

)
. (S62)

Correspondingly,
B = B(1) + B(2) + B(3) + B(4) (S63)

and
C = C(1) + C(2) + C(3) + C(4). (S64)

Since F (1) does not depend on x, its series expansion contains only the zeroth term. Therefore

B(1) = F (1) = −z3kyλ (S65)

and
C(1) = 0. (S66)

The series expansion for quantity B(1) can be obtained from Eqs. (S24), (S54) and (S65). Only odd values
of subscript m remain, so it is convenient to represent them as m = 2p+ 1. As a result,

B(1) = z3ky

∞∑
p=0

∞∑
q=0

(−k2‖z
2)p

(2p+ 2)!

(kzz)q

q!(2p+ q + 3)
. (S67)

In order to find B(2) and C(2), it is necessary to substitute value ξ = (kxx+ kyy)/k‖ of argument ξ into
Eq. (S54), and then expand factors (k‖ξ)

m:

(k‖ξ)
m = (kxx+ kyy)m =

m∑
s=0

(
m

s

)
(kxx)s(kyy)m−s, (S68)

where (
m

s

)
=

m!

s!(m− s)!
. (S69)

Eqs. (S54), (S60) and (S68), after introducing summation index u = m− s instead of m, give rise to

F (2)(x) = yz

∞∑
u=0

∞∑
q=0

∞∑
s=0

(
s+ u

u

)
(kxx)s (kyy)u

(s+ u+ 1)!

(kzz)q

q! (s+ u+ q + 2)
. (S70)
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This equation can be rewritten as

F (2)(x) = F (2)
0 + F (2)

1 x+ F (2)
2 x2 + . . . , (S71)

where

F (2)
s = yz

∞∑
u=0

∞∑
q=0

(
s+ u

u

)
ksx (kyy)u (kzz)q

(s+ u+ 1)! q! (s+ u+ q + 2)
. (S72)

These values of F (2)
s , being inserted into Eqs. (S56) and (S57), provide the following expressions for B(2)

and C(2):

B(2) = yz

∞∑
n=0

∞∑
u=0

∞∑
q=0

(
2n+ u

u

)
(−k2xr2⊥)n (kyy)u (kzz)q

(2n+ u+ 1)! q! (2n+ u+ q + 2)

(2n− 1)!!

(2n)!!
, (S73)

C(2) = kxyz
∞∑
m=0

∞∑
n=0

∞∑
u=0

∞∑
q=0

(
m+ 2n+ u+ 1

u

)

×
(kxx)m (−k2xr2⊥)n (kyy)u (kzz)q

(m+2n+u+2)! q! (m+2n+u+q+3)

(m+2n)!!(m−1)!!

m!!(m+2n+1)!!
. (S74)

Quantities B(3), B(4), C(3) and C(4) depend on function γ. Therefore, our next goal is to find out the series
expansion for this function. According to Eqs. (S16), (S24) and (S25),

γ(ξ) =
1

ξ2 + z2

[
β(ξ)− β(iz)− β(−iz)

2iz
ξ − β(iz) + β(−iz)

2

]
. (S75)

Expanding function β into the Maclaurin series

β(ξ) =
∞∑
m=0

βmξ
m, (S76)

where

βm =
∞∑
q=0

km‖ (kzz)q

(m+ 1)! q! (m+ q + 2)
, (S77)

one can obtain the following representation for function γ:

γ(ξ) =
∞∑
m=0

βmγm(ξ), (S78)
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where functions γm(ξ) are defined by Eq. (S75), in which β(ξ) is replaced with ξm. For even values of m

γm(ξ) =
ξm − (iz)m

ξ2 − (iz)2
= ξm−2 + ξm−4(iz)2 + ξm−6(iz)4 + . . .+ ξ0(iz)m−2

=

(m−2)/2∑
t=0

ξm−2t−2(−z2)t, (S79)

and for odd values of m

γm(ξ) =
ξm − (iz)m−1ξ

ξ2 − (iz)2
= ξm−2 + ξm−4(iz)2 + ξm−6(iz)4 + . . .+ ξ1(iz)m−3

=

(m−3)/2∑
t=0

ξm−2t−2(−z2)t. (S80)

Note that γ0(ξ) = γ1(ξ) = 0 for all ξ. Eqs. (S78) – (S80) can be summarized as follows:

γ(ξ) =
∞∑
m=2

[(m−2)/2]∑
t=0

βmξ
m−2t−2(−z2)t, (S81)

where square brackets denote the integer part. Introducing parameter p = m − 2t − 2, one can rewrite
Eq. (S81) in a more convenient form:

γ(ξ) =
∞∑
p=0

∞∑
t=0

βp+2t+2ξ
p(−z2)t. (S82)

Substituting Eq. (S77) here, we obtain the final expression for function γ as a power series:

γ(ξ) = k2‖

∞∑
p=0

∞∑
t=0

∞∑
q=0

(k‖ξ)
p (−k2‖z

2)t (kzz)q

(p+ 2t+ 3)! q! (p+ 2t+ q + 4)
. (S83)

This expression is to be put into Eqs. (S61) and (S62) in order to obtain series expansions for F (3)(x)
and F (4)(x). After transformations similar to Eqs. (S68) – (S70), function F (3)(x) takes the form

F (3)(x) = −z3k2xy
∞∑
u=0

∞∑
t=0

∞∑
q=0

∞∑
s=0

(
s+ u

u

) (kxx)s (kyy)u (−k2‖z
2)t (kzz)q

(s+ u+ 2t+ 3)! q! (s+ u+ 2t+ q + 4)
. (S84)

Similarly,

F (4)(x) = z3ky

∞∑
u=0

∞∑
t=0

∞∑
q=0

∞∑
s=0

(
s+ u

u

) (kxx)s+1 (kyy)u (−k2‖z
2)t (kzz)q

(s+ u+ 2t+ 3)! q! (s+ u+ 2t+ q + 4)
. (S85)
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From Eq. (S84), one can obtain contributions B(3) and C(3) via Eqs. (S56) and (S57), correspondingly:

B(3) = −z3k2xy
∞∑
n=0

∞∑
u=0

∞∑
t=0

∞∑
q=0

(
2n+ u

u

)

×
(−k2xr2⊥)n (kyy)u (−k2‖z

2)t (kzz)q

(2n+ u+ 2t+ 3)! q! (2n+ u+ 2t+ q + 4)

(2n− 1)!!

(2n)!!
, (S86)

C(3) = −z3k3xy
∞∑
m=0

∞∑
n=0

∞∑
u=0

∞∑
t=0

∞∑
q=0

(
m+ 2n+ u+ 1

u

)

×
(kxx)m (−k2xr2⊥)n (kyy)u (−k2‖z

2)t (kzz)q

(m+ 2n+ u+ 2t+ 4)! q! (m+ 2n+ u+ 2t+ q + 5)

(m+ 2n)!! (m− 1)!!

m!! (m+ 2n+ 1)!!
. (S87)

Similarly, it follows from Eq. (S85) that

B(4) = −z3k2xkyr2⊥
∞∑
n=0

∞∑
u=0

∞∑
t=0

∞∑
q=0

(
2n+ u+ 1

u

)

×
(−k2xr2⊥)n (kyy)u (−k2‖z

2)t (kzz)q

(2n+ u+ 2t+ 4)! q! (2n+ u+ 2t+ q + 5)

(2n+ 1)!!

(2n+ 2)!!
, (S88)

C(4) = z3kxky

∞∑
m=0

∞∑
n=0

∞∑
u=0

∞∑
t=0

∞∑
q=0

(
m+ 2n+ u

u

)

×
(kxx)m (−k2xr2⊥)n (kyy)u (−k2‖z

2)t (kzz)q

(m+ 2n+ u+ 2t+ 3)! q! (m+ 2n+ u+ 2t+ q + 4)

(m+ 2n)!! (m− 1)!!

m!! (m+ 2n+ 1)!!
. (S89)

Summing all the contributions B(1), B(2), B(3), B(4) given by Eqs. (S67), (S73), (S86) and (S88), one can
obtain Eq. (14) for function B. Similarly, Eq. (15) for function C can be obtained as a sum of contributions
C(2), C(3), C(4) from Eqs. (S74), (S87) and (S89). Therefore, representations (14) and (15) for functions B
and C have been derived.

4 CONVERGENCE OF SERIES THAT REPRESENT FUNCTIONS A, B AND C
In this section, we apply the direct comparison test for proving the convergence of infinite series (13) –
(15) that represent functions A, B and C.

Let us consider the expression to the right of summation signs in Eq. (13). There is an upper estimate for
the absolute value of this expression:∣∣∣∣∣ (kzz)s(−k2‖z

2)u

s!(2u+ 1)!(s+ 2u+ 2)

∣∣∣∣∣ < |kzz|ss!

|k2‖z
2|u

u!
. (S90)
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Consequently,

|A| < |z2|
∞∑
s=0

∞∑
u=0

|kzz|s

s!

|k2‖z
2|u

u!
. (S91)

The right-hand side of Eq. (S91) is a converging series:

|z2|
∞∑
s=0

∞∑
u=0

|kzz|s

s!

|k2‖z
2|u

u!
= |z2| exp

(
|kzz|+ |k2‖z

2|
)
. (S92)

Therefore series (13), that defines quantity A, also converges by virtue of the direct comparison test.

Quantity B, as defined by Eq. (14), is a sum of four contributions B(1), B(2), B(3) and B(4) given by
Eqs. (S67), (S73), (S86) and (S88), correspondingly. Their convergence can be tested separately.

The convergence proof for B(1) is essentially the same as that for A:

|B(1)| < |z3ky|
∞∑
p=0

∞∑
q=0

|k2‖z
2|p

p!

|kzz|q

q!
= |z3ky| exp

(
|k2‖z

2|+ |kzz|
)
. (S93)

Similarly,

|B(2)| < |yz|
∞∑
n=0

∞∑
u=0

∞∑
q=0

|k2xr2⊥|n

n!

|kyy|u

u!

|kzz|q

q!
= |yz| exp

(
|k2xr2⊥|+ |kyy|+ |kzz|

)
, (S94)

|B(3)| < |z3k2xy|
∞∑
n=0

∞∑
u=0

∞∑
t=0

∞∑
q=0

|k2xr2⊥|n

n!

|kyy|u

u!

|k2‖z
2|t

t!

|kzz|q

q!

= |z3k2xy| exp
(
|k2xr2⊥|+ |kyy|+ |k2‖z

2|+ |kzz|
)
, (S95)

and the upper estimate for B(4) is the same as that for B(4), up to the factor before the exponent:

|B(4)| < |z3k2xkyr2⊥| exp
(
|k2xr2⊥|+ |kyy|+ |k2‖z

2|+ |kzz|
)
. (S96)

Hence, representation (14) of quantity B is a converging series.

Similar considerations apply to quantity C. Its representation as an infinite series, Eq. (15), is a sum of
contributions C(2), C(3) and C(4) defined by Eqs. (S74), (S87) and (S89), correspondingly. Then,

|C(2)| < |kxyz|
∞∑
m=0

∞∑
n=0

∞∑
u=0

∞∑
q=0

|kxx|m

m!

|k2xr2⊥|n

n!

|kyy|u

u!

|kzz|q

q!

= |kxyz| exp
(
|kxx|+ |k2xr2⊥|+ |kyy|+ |kzz|

)
, (S97)
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|C(3)| < |z3k3xy|
∞∑
m=0

∞∑
n=0

∞∑
u=0

∞∑
t=0

∞∑
q=0

|kxx|m

m!

|k2xr2⊥|n

n!

|kyy|u

u!

|k2‖z
2|t

t!

|kzz|q

q!

= |z3k3xy| exp
(
|kxx|+ |k2xr2⊥|+ |kyy|+ |k2‖z

2|+ |kzz|
)
, (S98)

and
|C(4)| < |z3kxky| exp

(
|kxx|+ |k2xr2⊥|+ |kyy|+ |k2‖z

2|+ |kzz|
)
. (S99)

This proves that C(2), C(3) and C(4) are converging series. Consequently, the power-series representation (15)
for quantity C converges.

5 TRANSITION FROM COORDINATE SYSTEM KF TO K̃FE: DERIVATION OF
EQUATIONS (S26) AND (S27)

For clarity, we indicate near each equation of this section, whether it is related to coordinate system Kf or
to K̃fe.

In system Kf , x- and y-components of vector k are equal to 0 and k‖, respectively (see Fig. S1a).
Therefore

k · r = k‖y + kzz, (Kf ) (S100)

while in system K̃fe

k · r = kxx+ kyy + kzz. (K̃fe) (S101)

Taking into account that quantities k · r, kz and z are the same in both coordinate systems, one can obtain
transformation rule (S26) from Eqs. (S100) and (S101).

Then, let us consider the left-hand side of Eq. (S27). In system K̃fe, vector v is equal to

v =
zβ

r
(x, y, 0). (K̃fe) (S102)

The unit vector b in this system is directed along axis y (see Fig. S2). Hence,

b · v = vy =
yzβ

r
. (K̃fe) (S103)

Vectors b and w lie in the xy-plane in system Kf . Then, according Eq. (S15),

b ·w = bxwx + bywy =
xbxγ + k‖byλ

r
(Kf ) (S104)

and
r · b = xbx + yby. (Kf ) (S105)

Deriving xbx from Eq. (S105) and substituting it into Eq. (S104), one can obtain

b ·w =
r · bγ − ybyγ + k‖byλ

r
(Kf ) (S106)
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Let us perform the transition from Kf to K̃fe in Eq. (S106). In system Kf , k = (0, k‖, kz) and b =
(bx, by, 0), whence

k · b = k‖by. (Kf ) (S107)

On the other hand, b = (0, 1, 0) in system K̃f . Consequently

k · b = ky, (K̃fe) (S108)

r · b = y. (K̃fe) (S109)

Eqs. (S107) and (S108) provide the transformation rule for quantity by from Kf to K̃fe:

by →
ky
k‖
. (S110)

Applying transformation rules (S26) and (S110) to Eq. (S106) and using Eq. (S109), one can express
quantity b ·w in system K̃fe as follows:

b ·w =

yγ − (kxx+kyy)kyγ

k2‖
+ kyλ

r
. (K̃fe) (S111)

Finally, gathering Eqs. (S103) and (S111) together, writing r as
√
x2 + y2 + z2 and taking into account

that
k2‖ = k2x + k2y, (K̃fe) (S112)

one can easily derive Eq. (S27).

6 REDUCING INTEGRAL LFE TO INTEGRAL LE

It is convenient to introduce dimensionless quantities x̂1 = x1/r⊥, x̂2 = x2/r⊥, r̂1 =
√
x21 + r2⊥/r⊥,

r̂2 =
√
x22 + r2⊥/r⊥, and

Ln = r−n⊥

x2∫
x1

xn dx√
x2 + r2⊥

. (S113)

In these notations, Le ≡ L0 and

Lfe =
∞∑
n=0

Fnrn⊥Ln. (S114)

Relations (S31) and (S32) acquire the following form:

Ln = −n− 1

n
Ln−2 +

x̂n−12 r̂2 − x̂n−11 r̂1
n

, (n ≥ 2) (S115)

L1 = r̂2 − r̂1. (S116)
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Applying these relations repeatedly, one can express all integrals Ln with n = 1, 2, 3, . . . via quantities L0,
x̂1, x̂2, r̂1 and r̂2:

L1 = r̂2 − r̂1,

L2 = −1

2
L0 +

1

2
(x̂2r̂2 − x̂1r̂1),

L3 = −2

3
(r̂2 − r̂1) +

1

3
(x̂22r̂2 − x̂21r̂1),

L4 =
1 · 3
2 · 4

L0 −
3

2 · 4
(x̂2r̂2 − x̂1r̂1) +

1

4
(x̂32r̂2 − x̂31r̂1),

and so on. These results can be summarized as follows:

Ln = anL0 +
n−1∑
p=0

bnp(x̂
p
2r̂2 − x̂

p
1r̂1), (S117)

where an and bnp are some numerical coefficients. Our next goal is to find their values.

It is easy to find out from Eqs. (S115) and (S116) that

an =

{
0, if n is odd,

(−1)
n
2
(n−1)!!
n!! , if n is even.

(S118)

This equality holds also at n = 0, if we imply that (−1)!! = 0!! = 1.

Let us prove that

bnp = (−1)
n−p−1

2
(n− 1)!! (p− 1)!!

n!! p!!
if 0 ≤ p ≤ n− 1 and n− p is odd, (S119)

bnp = 0 otherwise. (S120)

Indeed, Eqs. (S119) and (S120) provide correct results for n = 0 and n = 1: all b0p and b1p are equal to
zero, except for b10 = 1. For n ≥ 2, coefficients bnp can be determined by means of recurrence relation

bnp =


−n−1n b(n−2)p, if p < n− 1,
1
n , if p = n− 1,

0, if p > n− 1

(S121)

that follows from Eq. (S115). One can check that coefficients bnp defined by Eqs. (S119) and (S120) obey
relation (S121). This proves that Eqs. (S119) and (S120) are valid.

Finally, after substituting Eqs. (S117) – (S120) into Eq. (S114) and some renaming of subscript indexes,
integral Lfe acquires the form expressed by Eqs. (S33) – (S35).
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