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S1: Different Population Sizes 

Table S1: Different population sizes in the proposed LIT model (Oorschot, 1996). 

Network type Size (# of nodes) 

SNc (soma) 8	𝑥	8	(64) 

SNc (terminal) 32	𝑥	32	(1024) 

D1-MSN (G) 32	𝑥	32	(1024) 

D1-MSN (GS) 32	𝑥	32	(1024) 

STN 32	𝑥	32	(1024) 

GPe 32	𝑥	32	(1024) 

CTX 32	𝑥	32	(1024) 

 

S2: Parameter Values of Neuronal Types 

Table S2: Parameter values of the neuronal types used in the proposed model of LIT 

(Izhikevich, 2003; Humphries et al., 2009; Muddapu et al., 2019). 

Parameter(s) STN GPe CTX MSN 

Izhikevich parameters  

𝑎	(𝑚𝑠!"), 

𝑏	(𝑝𝐴.𝑚𝑉!"), 

 

𝑎 = 0.005, 

𝑏 = 0.265, 

 

𝑎 = 0.1, 

𝑏 = 0.2, 

 

𝑎 = 0.03, 

𝑏 = −2, 

 

𝑎 = 0.01, 

𝑏 = −20, 



 

S3: SNc soma model (Muddapu and Chakravarthy, 2021) 

𝑐	(𝑚𝑉), 

𝑑	(𝑝𝐴) 

𝑐 = −65, 

𝑑 = 1.5 

𝑐 = −65, 

𝑑 = 2 

𝑐 = −50, 

𝑑 = 100 

𝑐 = −55, 

𝑑 = 91 

External current (𝐼#) 3	𝑝𝐴 4.25	𝑝𝐴 100	𝑝𝐴 0	𝑝𝐴  

Maximum peak of voltage :𝑣$%&'# < 30	𝑚𝑉 30	𝑚𝑉 40	𝑚𝑉 35	𝑚𝑉 

Membrane capacitance (𝐶#) 1	𝜇𝐹 1	𝜇𝐹 100	𝜇𝐹 15.2	𝑝𝐹 

Resting potential (𝑣(#) - - - −80	𝑚𝑉 

Threshold potential (𝑣)#) - - - −29.7	𝑚𝑉 

Membrane constant (𝑘#) - - - 1	𝑝𝐴.𝑚𝑉!" 

Number of laterals (𝑛𝑙𝑎𝑡#) 11 15 - - 

Radius of Gaussian laterals (𝑅#) 1.4 1.6 - - 

Synaptic strength within laterals (𝐴#) 1.3 0.1 - - 

Time decay constant for AMPA (𝜏*+,*) 6	𝑚𝑠 6	𝑚𝑠 6	𝑚𝑠 6	𝑚𝑠 

Time decay constant for NMDA (𝜏-+.*) 160	𝑚𝑠 160	𝑚𝑠 160	𝑚𝑠 160	𝑚𝑠 

Time decay constant for GABA (𝜏/*0*) 4	𝑚𝑠 4	𝑚𝑠 4	𝑚𝑠 4	𝑚𝑠 

Synaptic potential of AMPA receptor 

(𝐸*+,*) 
0	𝑚𝑉 0	𝑚𝑉 0	𝑚𝑉 0	𝑚𝑉 

Synaptic potential of NMDA receptor 

(𝐸-+.*) 
0	𝑚𝑉 0	𝑚𝑉 0	𝑚𝑉 0	𝑚𝑉 

Synaptic potential of GABA receptor 

(𝐸/*0*) 
−60	𝑚𝑉 −60	𝑚𝑉 −60	𝑚𝑉 −60	𝑚𝑉 

Concentration of Magnesium (𝑀𝑔12) 1	𝑚𝑀 1	𝑚𝑀 1	𝑚𝑀 1	𝑚𝑀 



 

Figure S3: Schematic of the single-compartment DA neuron model demonstrating the various ion 
currents in the model. 

The membrane potential equation for the SNc soma (𝑉) is given by, 

 
𝑑(𝑉)
𝑑𝑡 =

𝐹 ∗ 𝑣𝑜𝑙!"#
𝐶$%! ∗ 𝐴𝑅&'(

∗ 8	𝐽',*+ + 2 ∗ 𝐽',,+ + 𝐽',- + 𝐽.%&; (1) 

 

where, 𝐹 is the Faraday’s constant, 𝐶$%! is the SNc membrane capacitance, 𝑣𝑜𝑙!"# is the 

cytosolic volume, 𝐴𝑅&'( is the cytosolic area, 𝐽',*+ is the sodium membrane ion flux, 𝐽',,+ 

is the calcium membrane ion flux, 𝐽',- is the potassium membrane ion flux, and 𝐽.%& is the 

overall input current flux. 

Plasma Membrane Ion Channels 

The intracellular calcium concentration dynamics ([𝐶𝑎.]) is given by, 

 𝑑([𝐶𝑎.])
𝑑𝑡 = 𝐽',,+ (2) 

 

 𝐽',,+ = −
1

𝑧,+ ∗ 𝐹 ∗ 𝑣𝑜𝑙!"#
∗ A𝐼,+/ +	2 ∗ 𝐼&'!+ − 2 ∗ 𝐼*+,+0C (3) 

 



where, 𝓏,+ is the valence of calcium ion, 𝐼,+/ is the L-type calcium channel current, 𝐼&'!+ is 

the ATP-dependent calcium pump current, 𝐼*+,+0 is the sodium-potassium exchanger current, 

𝐹 is the Faraday’s constant, and 𝑣𝑜𝑙!"# is the cytosolic volume. 

The voltage-dependent L-type calcium channel current (𝐼,+/) is given by, 

 𝐼,+/(𝑉) = 	 A𝑔̅,+,/ ∗ 𝑂,+,/C ∗ 	HI[𝐶𝑎.] ∗ [𝐶𝑎1]J ∗ K
sinh(𝑉2 − 𝑉,+)

Psinh(𝑉2)𝑉2
Q
R (4) 

 

 𝑂,+,/ = 𝑚,+,/ ∗ ℎ,+,/ (5) 

 

where, 𝑔̅,+,/ is the maximal conductance for calcium channel, 𝑂,+,/ is the gating variable of 

calcium channel, 𝑚,+,/ is the activation gate of the L-type calcium channel, ℎ,+,/ is the 

inactivation gate of L-type calcium channel, [𝐶𝑎.] is the intracellular calcium concentration, 

[𝐶𝑎1] is the extracellular calcium concentration, 𝑉,+ is the reversal potential for calcium ion, 

and	𝑉2 is the voltage defined thermodynamic entity. 

 
𝑑A𝑚,+,/C

𝑑𝑡 =

1

U1 + 𝑒34
(6789)

; <W
−𝑚,+,/

7.68 ∗ 𝑒
=4>67?98;.AAB

!
C
+ 0.723

 

 

(6) 

 

 ℎ,+,/ =
0.00045

0.00045 + [𝐶𝑎.]
 (7) 

 

The intracellular sodium concentration ([𝑁𝑎.]) dynamics is given by, 

 𝑑([𝑁𝑎.])
𝑑𝑡 = 𝐽',*+ (8) 

 



 𝐽',*+ = −
1

𝓏*+ ∗ 𝐹 ∗ 𝑣𝑜𝑙!"#
∗ (𝐼*+D +	3 ∗ 𝐼*+- + 3 ∗ 𝐼*+,+0) (9) 

 

where, 𝓏*+ is the valence of sodium ion, 𝐼*+D is the total sodium channel current, 𝐼*+- is the 

ATP-dependent sodium-potassium pump current, 𝐼*+,+0 is the sodium-potassium exchanger 

current, 𝐹 is the Faraday’s constant, and 𝑣𝑜𝑙!"# is the cytosolic volume. 

 The total sodium channel current is given by, 

 𝐼*+D = 𝐼*+ + 𝐼*+E,* + 𝐼*+FG (10) 

 

where, 𝐼*+ is the voltage-dependent sodium channel current, 𝐼*+E,* is the hyperpolarization-

activated cyclic nucleotide-gated sodium channel current, and 𝐼*+FG is the leaky sodium 

channel current. 

The voltage-dependent sodium channel current (𝐼*+) is given by, 

 𝐼*+(𝑉) = 	 (𝑔̅*+ ∗ 𝑂*+) ∗ 	HI[𝑁𝑎.] ∗ [𝑁𝑎1]J ∗

⎝

⎜
⎜
⎜
⎛sinh U12 ∗ (𝑉2 − 𝑉*+)W

_
sinh H12 ∗ 𝑉2J

H12 ∗ 𝑉2J
`

⎠

⎟
⎟
⎟
⎞

 (11) 

 

 𝑂*+ = 𝑚*+
A ∗ ℎ*+ (12) 

 

where, 𝑔̅*+ is the maximal conductance for sodium channel, 𝑂*+ is the gating variable of 

sodium channel, 𝑚*+ is the activation gate of the sodium channel, ℎ*+ is the inactivation gate 

of the sodium channel, [𝑁𝑎.] is the intracellular sodium concentration, [𝑁𝑎1] is the 

extracellular sodium concentration, 𝑉*+ is the reversal potential for sodium ion, and	𝑉2 is the 

voltage-defined thermodynamic entity. 

 
𝑑(𝑚*+)
𝑑𝑡 = 1.965 ∗ 𝑒(8.;8H;∗6") ∗ (1 − 𝑚*+) 																																															

− 0.0424 ∗ 𝑒(48.99J8∗6") ∗ (𝑚*+) 
(13) 

 



 
𝑑(ℎ*+)
𝑑𝑡 = 0.00009566 ∗ 𝑒(4H.KA8;∗6") ∗ (1 − ℎ*+) 																							

− 0.5296 ∗ 𝑒(8.8J?J∗6") ∗ (ℎ*+) 
(14) 

 

The hyperpolarization-activated cyclic nucleotide (HCN) gated sodium channel current 

(𝐼*+E,*) is given by, 

 

𝐼*+E,*(𝑉) = 	 (𝑔̅*+E,* ∗ 𝑂*+E,*) ∗ 	HI[𝑁𝑎.] ∗ [𝑁𝑎1]J

∗

⎝

⎜
⎜
⎜
⎛sinh U12 ∗ (𝑉2 − 𝑉*+)W

_
sinh H12 ∗ 𝑉2J

H12 ∗ 𝑉2J
`

⎠

⎟
⎟
⎟
⎞

 
(15) 

 

where, 𝑔̅*+E,* is the maximal conductance for sodium HCN channel, 𝑂*+E,* is the gating 

variable of sodium HCN channel, [𝑁𝑎.] is the intracellular sodium concentration, [𝑁𝑎1] is the 

extracellular sodium concentration, 𝑉*+ is the reversal potential for sodium ion,	𝑉2 is the 

voltage defined thermodynamic entity, and [𝑐𝐴𝑀𝑃] is the cyclic adenosine monophosphate 

concentration. 

 𝑑(𝑂*+E,*)
𝑑𝑡 = 𝑘L,E,* ∗ (1 − 𝑂*+E,*) − 𝑘M,E,* ∗ 𝑂*+E,* (16) 

 

 𝑘L,E,* 	= 	 𝑘L,LM11 ∗ 𝑃! + 𝑘L,N%O ∗ (1 − 𝑃!) (17) 

 

 𝑘M,E,* 	= 	 𝑘M,LM11 ∗ 𝑃P + 𝑘M,N%O ∗ (1 − 𝑃P) (18) 

 

 𝑃! =
1

P1 + [𝑐𝐴𝑀𝑃]
0.001163Q

;										𝑃P =
1

P1 + [𝑐𝐴𝑀𝑃]
0.0000145Q

 (19) 

 

 



 𝑘L,LM11 =
0.006

1 + 𝑒Q
67J;.;
?.K9 R

; 		 													𝑘L,N%O =
0.0268

1 + 𝑒Q
67SK.H
8A.A R

 (20) 

 

 𝑘M,LM11 =
0.08

1 + 𝑒Q4
6798.;

; R
; 		 													𝑘M,N%O =

0.08

1 + 𝑒Q4
67A9.9

; R
 (21) 

 

The leaky sodium channel current (𝐼*+FG) is given by, 

 𝐼*+FG(𝑉) = 	 (𝑔̅*+FG) ∗ 	HI[𝑁𝑎.] ∗ [𝑁𝑎1]J ∗

⎝

⎜
⎜
⎜
⎛sinh U12 ∗ (𝑉2 − 𝑉*+)W

_
sinh H12 ∗ 𝑉2J

H12 ∗ 𝑉2J
`

⎠

⎟
⎟
⎟
⎞

 (22) 

 

where, 𝑔̅*+FG is the maximal conductance for leaky sodium channel, [𝑁𝑎.] is the intracellular 

sodium concentration, [𝑁𝑎1] is the extracellular sodium concentration, 𝑉*+ is the reversal 

potential for sodium ion, and	𝑉2 is the voltage defined thermodynamic entity. 

The intracellular potassium concentration dynamics ([𝐾.]) is given by, 

 𝑑([𝐾.])
𝑑𝑡 = 𝐽',- (23) 

 

 𝐽',- = −
1

𝓏- ∗ 𝐹 ∗ 𝑣𝑜𝑙!"#
∗ (𝐼-D −	2 ∗ 𝐼*+-) (24) 

 

where, 𝓏- is the valence of potassium ion, 𝐼-D is the total potassium channel current, 𝐼*+- is 

the ATP-dependent sodium-potassium pump current, 𝐹 is the Faraday’s constant, and 𝑣𝑜𝑙!"# 

is the cytosolic volume. 

 The total potassium channel current is given by, 

 𝐼-D = 𝐼-OM + 𝐼-.M + 𝐼-$G (25) 

 



where, 𝐼-OM is the voltage-dependent (delayed rectifying, DR) potassium channel current, 𝐼-.M 

is the voltage-dependent (inward rectifying, IR) potassium channel current, and 𝐼-$G is the 

calcium-dependent (small conductance, SK) potassium channel current. 

The voltage-dependent (delayed rectifying) potassium channel current (𝐼-OM) is given 

by, 

 𝐼-OM(𝑉) = 	 (𝑔̅-OM ∗ 𝑂-OM) ∗ 	 (𝑉 − 𝑉- ∗ 𝑉T) (26) 

 

 𝑂-OM = 𝑚-OM
A  (27) 

 

where, 𝑔̅-OM is the maximal conductance for delayed rectifying potassium channel, 𝑂-OM is the 

gating variable of voltage-dependent (delayed rectifying) potassium channel, 𝑉- is the reversal 

potential for potassium ion, and 𝑉T is the temperature defined thermodynamic entity. 

 
𝑑A𝑚-,OMC

𝑑𝑡 =

1

U1 + 𝑒34
(67H9)
8H <W

−𝑚-,OM

18

k1 + 𝑒
=4>67?98;.AAB

!
C
l

+ 1
 (28) 

   

The voltage-dependent (inward rectifying) potassium channel current (𝐼-.M) is given 

by, 

 𝐼-.M(𝑉) = 	 (𝑔̅-.M ∗ 𝑂-.M) ∗ 	(𝑉 − 𝑉- ∗ 𝑉T) (29) 

 

 𝑂-.M =
1

P1 + 𝑒Q
67J9
8H RQ

 (30) 

 

where, 𝑔̅-.M is the maximal conductance for inward rectifying potassium channel, 𝑂-.M is the 

gating variable of voltage-dependent (inward rectifying) potassium channel, 𝑉- is the reversal 

potential for potassium ion, and 𝑉T is the temperature defined thermodynamic entity. 



The calcium-dependent (small conductance) potassium channel current (𝐼-$G) is given 

by, 

 𝐼-$G(𝑉) = 	 (𝑔̅-$G ∗ 𝑂-$G) ∗ 	HI[𝐾.] ∗ [𝐾1]J ∗

⎝

⎜
⎜
⎜
⎛sinh U12 ∗ (𝑉2 − 𝑉-)W

_
sinh H12 ∗ 𝑉2J

H12 ∗ 𝑉2J
`

⎠

⎟
⎟
⎟
⎞

 (31) 

 

 𝑂-$G =
[𝐶𝑎.]K.H

[𝐶𝑎.]K.H + 0.00035K.H
 (32) 

 

where, 𝑔̅-$G is the maximal conductance for small conductance potassium channel, 𝑂-$G is the 

gating variable of calcium-dependent (small conductance) potassium channel, [𝐾.] is the 

intracellular potassium concentration, [𝐾1] is the extracellular potassium concentration, [𝐶𝑎.] 

is the intracellular calcium concentration, 𝑉- is the reversal potential for potassium ion, and 𝑉2 

is the voltage defined thermodynamic entity. 

The overall synaptic input current flux A𝐽$"%C to SNc neuron is given by, 

 𝐽$"% = −
1

𝐹 ∗ 𝑣𝑜𝑙!"#
∗ A𝐼$"%7 +	𝐼$"%4 − 𝐼1U#C (33) 

 

where, 𝐼$"%7  is the excitatory synaptic current, 𝐼$"%4  is the inhibitory synaptic current, 𝐼1U# is the 

external current applied, 𝐹 is the Faraday’s constant, and 𝑣𝑜𝑙!"# is the cytosolic volume. The 

different synaptic receptors were modeled similar to Destexhe et al.(Destexhe et al., 1998), and 

details are specified in Supplementary Material-S7. 

Plasma Membrane ATPases 

The plasma membrane sodium-potassium ATPase (𝐼*+-) is given by, 

 
𝐼*+- = 𝐾%+G ∗ 8𝑘8,%+G ∗ 𝒫A𝐸8,%+G∗ C ∗ 𝑦%+G 																																										

− 𝑘H,%+G ∗ 𝒫A𝐸H,%+G∗ C ∗ (1 − 𝑦%+G); 
(34) 

  



 𝑑(𝑦%+G)
𝑑𝑡 = 𝛽%+G ∗ (1 − 𝑦%+G) − 𝛼%+G ∗ 𝑦%+G (35) 

 

 𝛽%+G = 𝑘H,%+G ∗ 𝒫A𝐸H,%+G∗ C + 𝑘K,%+G ∗ 𝒫A𝐸H,%+G# C (36) 

 

 𝛼%+G = 𝑘8,%+G ∗ 𝒫A𝐸8,%+G∗ C + 𝑘A,%+G ∗ 𝒫A𝐸8,%+G# C (37) 

 

 𝒫A𝐸8,%+G∗ C =
1

r1 +
𝐾%+G,%+.
[𝑁𝑎.]

∗ P1 + [𝐾.]
𝐾%+G,G.

Qs
 (38) 

 

 𝒫A𝐸8,%+G# C =
1

r1 +
𝐾%+G,G.
[𝐾.]

∗ P1 + [𝑁𝑎.]
𝐾%+G,%+.

Qs
 (39) 

 

 𝒫A𝐸H,%+G∗ C =
1

r1 +
𝐾%+G,%+1
𝑁𝑎1LL

∗ P1 + [𝐾1]
𝐾%+G,G1

Qs
 (40) 

 

 𝒫A𝐸H,%+G# C =
1

r1 +
𝐾%+G,G1
[𝐾1]

∗ P1 +
𝑁𝑎1LL
𝐾%+G,%+1

Qs
 (41) 

 

 𝑁𝑎1LL = [𝑁𝑎1] ∗ 𝑒(4W.JH∗6") (42) 

 

 𝑘8,%+G =
0.37

1 + 0.094
[𝐴𝑇𝑃.]

 (43) 

 

where, 𝐾%+G is the maximal conductance for sodium-potassium ATPase, [𝑁𝑎.] is the 

intracellular concentration of sodium ion, [𝑁𝑎1] is the extracellular concentration of sodium 

ion, [𝐾.] is the intracellular concentration of potassium ion, [𝐾1] is the extracellular 



concentration of potassium ion, A𝑘8,%+G , 𝑘H,%+G , 𝑘A,%+G , 𝑘K,%+GC are the reaction rates, 

A𝐾%+G,%+1 , 𝐾%+G,%+. , 𝐾%+G,G1 , 𝐾%+G,G.C are the dissociation constants, [𝐴𝑇𝑃.] is the intracellular 

concentration of adenosine triphosphate (ATP), and 𝑉2 is the voltage defined thermodynamic 

entity. 

 The plasma membrane calcium ATPase A𝐼&'!+C is given by, 

 𝐼&'!+ = 𝐾&! ∗ 8𝑘8,&! ∗ 𝒫A𝐸8,&!∗ C ∗ 𝑦&! − 𝑘H,&! ∗ 𝒫A𝐸H,&!∗ C ∗ A1 − 𝑦&!C; (44) 

 

 𝑑A𝑦&!C
𝑑𝑡 = 𝛽&! ∗ A1 − 𝑦&!C − 𝛼&! ∗ 𝑦&! (45) 

 

 𝛽&! = 𝑘H,&! ∗ 𝒫A𝐸H,&!∗ C + 𝑘K,&! ∗ 𝒫A𝐸H,&!C (46) 

 

 𝛼&! = 𝑘8,&! ∗ 𝒫A𝐸8,&!∗ C + 𝑘A,&! ∗ 𝒫A𝐸8,&!C (47) 

 

 𝒫A𝐸8,&!∗ C =
1

P1 +
𝐾&!,.
[𝐶𝑎.]

Q
; 													𝒫A𝐸H,&!∗ C =

1

P1 +
𝐾&!,1
[𝐶𝑎1]

Q
 (48) 

 

 𝒫A𝐸8,&!C = 1 − 𝒫A𝐸8,&!∗ C; 									𝒫A𝐸H,&!C = 1 − 𝒫A𝐸H,&!∗ C (49) 

 

 𝑘8,&! =
1

1 + 0.1
[𝐴𝑇𝑃.]

 (50) 

 

 𝐾&!,. = v
173.6

1 + [𝐶𝑎𝐶𝑎𝑚]5 ∗ 1049
+ 6.4w ∗ 1049 (51) 

 



 𝐾&! = 𝑘&'!+ ∗ x
10.56 ∗ [𝐶𝑎𝐶𝑎𝑚]

[𝐶𝑎𝐶𝑎𝑚] + 5 ∗ 1049 + 1.2y (52) 

 

where, A𝑘8,&! , 𝑘H,&! , 𝑘A,&! , 𝑘K,&!C are the reaction rates, 𝑘&'!+ is the maximal conductance for 

calcium ATPase, A𝐾&!,1 , 𝐾&!,.C are the dissociation constants, [𝐴𝑇𝑃.] is the intracellular 

concentration of ATP, [𝐶𝑎.] is the intracellular calcium concentration, and [𝐶𝑎𝐶𝑎𝑚] is the 

intracellular calcium-bound calmodulin concentration. 

Plasma Membrane Exchangers 

The plasma membrane sodium-calcium exchanger (𝐼*+,+0) is given by, 

 

𝐼*+,+0

= 𝑘U' ∗
[𝑁𝑎.]A ∗ [𝐶𝑎1] ∗ 𝑒𝑥𝑝(X#$∗6") − [𝑁𝑎1]A ∗ [𝐶𝑎.] ∗ 𝑒Y(X#$48)∗6"Z

A1 + 𝒟U' ∗ 8[𝑁𝑎.]A ∗ [𝐶𝑎1] + [𝑁𝑎1]A ∗ [𝐶𝑎.];C ∗ P1 +
[𝐶𝑎.]
0.0069Q

 (53) 

 

where, 𝑘U' is the maximal conductance for sodium-calcium exchanger, [𝑁𝑎1] is the 

extracellular sodium concentration, [𝑁𝑎.] is the intracellular sodium concentration, [𝐶𝑎1] is 

the extracellular calcium concentration, [𝐶𝑎.] is the intracellular calcium concentration, 𝛿U' is 

the energy barrier parameter, 𝒟U' is the denominator factor, and 𝑉2 is the voltage defined 

thermodynamic entity. 

Table S3.1: Parameter values for SNc soma model (Francis et al., 2013). 

Constant Symbol Value Units 

Faraday’s constant 𝐹 96485 𝑐𝑜𝑢𝑙𝑜𝑚𝑏 ∗ 𝑚𝑜𝑙𝑒48 

SNc membrane capacitance 𝐶$%! 9	𝑥	10; 𝑝𝐹 ∗ 𝑐𝑚4H 

Cytosolic volume 𝑣!"# 𝜙!"# ∗ 𝑣&'( 𝑝𝑙 

Fraction of cytosolic volume 𝜙!"# 0.5 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Pacemaking unit (PMU) volume 𝑣&'( 5 𝑝𝑙 

PMU area 𝒜&'( 𝒮&'( ∗ 𝑣&'( 𝑐𝑚H 



PMU surface area-to-volume ratio 𝒮&'( 1.6667	𝑥	10K 𝑐𝑚48 

Voltage defined thermodynamic 

entity 
𝑉2 

𝑉
𝑉T

 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Temperature defined 

thermodynamic entity 
𝑉T 

𝑅 ∗ 𝑇
𝐹  𝑚𝑉 

Universal gas constant 𝑅 8314.472 𝑚𝐽 ∗ 𝑚𝑜𝑙48 ∗ 	𝐾48 

Physiological temperature 𝑇 310.15 𝐾 

Maximal conductance of calcium 

channel 
𝑔̅,+,/ 2101.2 𝑝𝐴 ∗ 𝑚𝑀48 

Extracellular calcium 

concentration 
[𝐶𝑎1] 1.8 𝑚𝑀 

Reversal potential for calcium ion 𝑉,+ 
1
2 ∗ log U

[𝐶𝑎1]
[𝐶𝑎.]

W 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Valence of calcium ion 𝓏,+ 2 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Maximal conductance of sodium 

channel 
𝑔̅*+ 907.68 𝑝𝐴 ∗ 𝑚𝑀48 

Extracellular sodium 

concentration 
[𝑁𝑎1] 137 𝑚𝑀 

Reversal potential for sodium ion 𝑉*+ log U
[𝑁𝑎1]
[𝑁𝑎.]

W 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Valence of sodium ion 𝓏*+ 1 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Maximal conductance of sodium 

HCN channel 
𝑔̅*+E,* 51.1 𝑝𝐴 ∗ 𝑚𝑀48 

Maximal conductance of leaky 

sodium channel 
𝑔̅*+FG 0.0053 𝑝𝐴 ∗ 𝑚𝑀48 

Cyclic adenosine monophosphate 

concentration 
[𝑐𝐴𝑀𝑃] 1	𝑥	1049 𝑚𝑀 



Maximal conductance of delayed 

rectifying potassium channel 
𝑔̅-OM 31.237 𝑛𝑆 

Extracellular potassium 

concentration 
[𝐾1] 5.4 𝑚𝑀 

Reversal potential for potassium 

ion 
𝑉- log U

[𝐾1]
[𝐾.]

W 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Valence of potassium ion 𝓏- 1 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Maximal conductance of inward 

rectifying potassium channel 
𝑔̅-.M 13.816 𝑛𝑆 

Maximal conductance of small 

conductance potassium channel 
𝑔̅-$G 2.2515 𝑝𝐴 ∗ 𝑚𝑀48 

Maximal conductance for sodium-

potassium ATPase 
𝐾%+G 1085.7 𝑝𝐴 

Reaction rates of 𝐼*+- 𝑘H,%+G 0.04 𝑚𝑠48 

 𝑘A,%+G 0.01 𝑚𝑠48 

 𝑘K,%+G 0.165 𝑚𝑠48 

Dissociation constants of 𝐼*+- 𝐾%+G,%+1 69.8 𝑚𝑀 

 𝐾%+G,%+. 4.05 𝑚𝑀 

 𝐾%+G,G1 0.258 𝑚𝑀 

 𝐾%+G,G. 32.88 𝑚𝑀 

Maximal conductance for calcium 

ATPase 
𝑘&'!+ 2.233 𝑝𝐴 ∗ 𝑚𝑠48 

Reaction rates of 𝐼&'!+ 𝑘H,&! 0.001 𝑚𝑠48 

 𝑘A,&! 0.001 𝑚𝑠48 

 𝑘K,&! 1 𝑚𝑠48 



Dissociation constants of 𝐼&'!+ 𝐾&!,1 2 𝑚𝑀 

Maximal conductance for sodium-

calcium exchanger 
𝑘U' 0.0166 𝑝𝐴 ∗ 𝑚𝑠48 

Energy barrier parameter of 

𝐼*+,+0 
𝛿U' 0.35 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Denominator factor of 𝐼*+,+0 𝒟U' 0.001 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

 

Table S3.2: Steady state values of ion-channel dynamics of SNc cell model (Francis et al., 

2013). 

Symbol Value Symbol Value 

𝑉 −49.42	𝑚𝑉 ℎ*+ 0.1848 

[𝐶𝑎.] 1.88	𝑥	104K	𝑚𝑀 𝑂*+E,* 0.003 

[𝑁𝑎.] 4.69	𝑚𝑀 𝑚-,OM 0.003 

[𝐾.] 126.06	𝑚𝑀 𝑦%+G 0.6213 

𝑚*+ 0.0952 𝑦&! 0.483 

 

S4: SNc Terminal Model (Muddapu and Chakravarthy, 2021) 

The three compartments are intracellular compartment representing cytosol, extracellular 

compartment representing extracellular space (ECS), and vesicular compartment representing 

a vesicle. In dopamine turnover processes, L-tyrosine (TYR) is converted into L-3,4-

dihydroxyphenylalanine or L-DOPA by tyrosine hydroxylase (TH), which in turn is converted 

into dopamine (DA) by aromatic L-amino acid decarboxylase (AADC) (Figure-S4.1). The 

cytoplasmic DA (𝐷𝐴!) is stored into vesicles by vesicular monoamine transporter 2 (VMAT-

2) (Figure-S4.2). Upon arrival of action potential, vesicular DA (𝐷𝐴[) is released into 

extracellular space (Figure-S4.3). Most of the extracellular DA (𝐷𝐴1) is taken up into the 

terminal through DA plasma membrane transporter (DAT) (Figure-S4.4) and remaining 

extracellular DA is metabolized by catechol-O-methyltransferase (COMT) and monoamine 

oxidase (MAO) into homovanillic acid (HVA) (Figure-S4.5). The DA that enters the terminal 



is again packed into vesicles, and the remaining cytoplasmic DA is metabolized by COMT and 

MAO enzymes (Figure-S4.5). It is known that a DA neuron self-regulates its firing, 

neurotransmission  and synthesis by autoreceptors (Anzalone et al., 2012; Ford, 2014). In the 

present model, we included autoreceptors that regulate the synthesis and release of dopamine 

(Figure-S4.6, S4.7). Along with TYR, external L-DOPA compete for transporting into the 

terminal through aromatic L-amino acid transporter (AAT) (Figure-S4.8). 

 

Figure S4: Schematic of Dopamine turnover processes in the SNc cell model. 
Modelling Extracellular DA in the ECS 

The major three mechanisms that determine the dynamics of extracellular DA ([𝐷𝐴1]) in the 

ECS given by, 

 𝑑([𝐷𝐴1])
𝑑𝑡

= 𝐽M1F − 𝐽2\D − 𝐽1O+P  (54) 

 

where, 𝐽M1F represents the flux of calcium-dependent DA release from the DA terminal, 𝐽2\D 

represents the unidirectional flux of DA translocated from the extracellular compartment (ECS) 

into the intracellular compartment (cytosol) via DA plasma membrane transporter (DAT), and 

𝐽1O+P  represents the outward flux of DA degradation, which clears DA from ECS. 



Calcium-Dependent DA Release Flux 

Assuming that calcium-dependent DA release occurs within less than a millisecond after the 

calcium channels open, the flux of DA release (𝐽M1F) from the DA terminal is given by, 

 𝐽M1F = 𝜓 ∗ 𝑛]]^ ∗ 𝑃M1F([𝐶𝑎.]) (55) 

 

where, [𝐶𝑎.] is the intracellular calcium concentration in the DA terminal, 𝑃M1F is the release 

probability as a function of intracellular calcium concentration, 𝑛]]^ is the average number of 

readily releasable vesicles, and 𝜓 is the average release flux per vesicle within a single synapse. 

 The flux of calcium-dependent DA release depends on extracellular DA concentration, 

and intracellular ATP acts as a feedback mechanism, assuming this regulation as extracellular 

DA and intracellular ATP controls the number of vesicles in the readily releasable vesicle pool 

(𝑛]]^) which is given by, 

 
𝑛]]^ =

𝜂%MM& ∗ 𝑒
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 (57) 

 

where, 8𝐷𝐴[+;	is the initial vesicular DA concentration, 𝐷𝐴[, is the sensitivity to vesicular 

concentration, 𝐷𝐴]& is the high-affinity state for DA binding to receptors and 𝐷𝐴], is the 

binding sensitivity, [𝐴𝑇𝑃.] is the intracellular ATP concentration, 𝐾+,]]^ is the activation 

constant for ATP, 𝜂%MM& is the effect of misfolded alpha-synuclein on vesicle recycling (Venda 

et al., 2010), 𝜂̅%MM& is the maximal vesicle recycling efficiency, 𝛽%MM&,+$"%$%, is the maximum 

fractional decrease in the vesicle recycling efficiency through 𝐴𝑆𝑌𝑁'.$, 𝐾+$"%$%, is the 

threshold concentration for damage by 𝐴𝑆𝑌𝑁'.$, and [𝐴𝑆𝑌𝑁'.$] is the misfolded alpha-

synuclein concentration. 



The release probability of DA as a function of intracellular calcium concentration is 

given by, 

 𝑃M1F([𝐶𝑎.]) = 𝑃�M1F ∗
[𝐶𝑎.]K

[𝐶𝑎.]K + 𝐾M1FK
 (58) 

 

where, 𝑃�M1F is the maximum release probability and 𝐾M1F is the sensitivity of calcium 

concentration, and [𝐶𝑎.] is the intracellular calcium concentration. 

Unidirectional Reuptake Flux of DA 

The unidirectional reuptake flux of extracellular DA into the presynaptic terminal is given by, 

 𝐽2\D = 𝑉�1O+ ∗
[𝐷𝐴1]

𝐾1O+ + [𝐷𝐴1]
 (59) 

 

where, 𝑉�1O+ is the maximal velocity of dopamine transporter (DAT), 𝐾1O+ is the DA 

concentration at half-maximal velocity, and [𝐷𝐴1] is the extracellular DA concentration. 

Outward Extracellular Flux 

The flux of extracellular DA enzymatic degradation in the synaptic cleft (ECS) is given by, 

 𝐽1O+P = 𝑘!P'# ∗ [𝐷𝐴1] (60) 

 

where, 𝑘!P'# is the rate at which extracellular DA cleared from ECS, and [𝐷𝐴1] is the 

extracellular DA concentration. 

Modelling Intracellular DA in the Terminal 

The intracellular DA dynamics ([𝐷𝐴.]) is determined as the sum of dopamine concentration in 

cytosolic and vesicular compartments and is given by, 

 𝑑([𝐷𝐴𝑖])
𝑑𝑡

=
𝑑([𝐷𝐴𝑐])

𝑑𝑡
+
𝑑([𝐷𝐴𝑣])

𝑑𝑡
 (61) 

 

The cytosolic DA dynamics ([𝐷𝐴𝑐]) is given by, 



 𝑑([𝐷𝐴𝑐])
𝑑𝑡

= 𝐽2\D − 𝐽6e\D − 𝐽!O+P + 𝐽FOP&+ (62) 

 

where, 	𝐽2\D represents the unidirectional flux of DA translocated from ECS into the cytosol 

through DAT, 𝐽6e\D represents the flux of cytosolic DA into vesicle through VMAT-2, 𝐽.O+P  

represents the outward flux of DA degradation, which clears DA from the cytosol, and 𝐽FOP&+ 

represents the flux of synthesized cytosol DA from L-DOPA. 

The vesicular DA dynamics ([𝐷𝐴[]) is given by, 

 𝑑([𝐷𝐴𝑣])
𝑑𝑡

= 𝐽6e\D − 𝐽M1F (63) 

 

where, 𝐽M1F represents the flux of calcium-dependent DA release from the DA terminal, 𝐽6e\D 

represents the flux of cytosolic DA into a vesicle. 

L-DOPA Synthesis Flux 

The flux of synthesized L-DOPA whose velocity is the function of intracellular calcium 

concentration and L-DOPA synthesis is regulated by the substrate (TYR) itself, extracellular 

DA (via autoreceptor) and intracellular DA concentrations are given by, 

 𝐽$"%# =
𝑉$"%#

1 + 𝐾Df]
[𝑇𝑌𝑅] ∗ P1 +

[𝐷𝐴!]
𝐾.,!O+

+ [𝐷𝐴1]𝐾.,1O+
Q
 (64) 

 

where, 𝑉$"%# is the velocity of synthesizing L-DOPA, [𝑇𝑌𝑅] is the tyrosine concentration in 

terminal bouton, 𝐾Df] is the tyrosine concentration at which half-maximal velocity was 

attained, 𝐾.,!O+ is the inhibition constant on 𝐾Df] due to cytosolic DA concentration, 𝐾.,1O+ is 

the inhibition constant on 𝐾Df] due to extracellular DA concentration, [𝐷𝐴!] is the cytoplasmic 

DA concentration, and [𝐷𝐴1] is the extracellular DA concentration. 

 In Chen et al.(Chen et al., 2003), neuronal stimulation was linked to DA synthesis 

through an indirect event, which starts with calcium influx into the terminal bouton. In this 

model, the velocity of L-DOPA synthesis as a function of calcium levels in the terminal bouton 

is expressed as, 



 𝑉$"%#(𝐶𝑎.) = 𝑉�$"%# ∗
[𝐶𝑎.]K

𝐾$"%#K + [𝐶𝑎.]K
 (65) 

 

where, 𝐾$"%# is the calcium sensitivity, 𝑉�$"%# is the maximal velocity for L-DOPA synthesis, 

and [𝐶𝑎.] is the intracellular calcium concentration. 

Storage Flux of DA into the Vesicle 

The flux of transporting DA in the cytosol into the vesicles, which depends on the intracellular 

ATP is given by, 

 𝐽6e\D = 𝑉!O+,\D^ ∗
[𝐷𝐴!]

𝐾!O+ + [𝐷𝐴!]
 (66) 

 

 𝑉!O+,\D^ = 𝑉�!O+ ∗ 𝛼['+# ∗ 𝑒(g*$&.∗[\D^%]) (67) 

 

where, 𝐾!O+ is the cytosolic DA concentration at which half-maximal velocity was attained, 

𝑉�!O+ is the maximal velocity with which DA was packed into vesicles, [𝐷𝐴!] is the cytosolic 

DA concentration, 𝛼['+# is the scaling factor for VMAT-2, 𝛽['+# is the scaling factor for 

𝐴𝑇𝑃., and [𝐴𝑇𝑃.] is the intracellular ATP concentration. 

Outward Intracellular Flux 

The flux of intracellular DA enzymatic degradation in synaptic bouton (cytosol) is given by, 

 𝐽!O+P = 𝑘'+P ∗ [𝐷𝐴!] (68) 

 

where, 𝑘'+P is the rate at which intracellular DA cleared from the cytosol, and [𝐷𝐴!] is the 

cytosolic DA concentration. 

L-DOPA to DA Conversion Flux 

The flux of L-DOPA conversion to DA by AADC(Reed et al., 2012) is given by, 

 𝐽FOP&+ = 𝑉�++O! ∗
[𝐿𝐷𝑂𝑃𝐴]

𝐾++O! + [𝐿𝐷𝑂𝑃𝐴]
 (69) 

 



where, 𝐾++O! is the L-DOPA concentration at which half-maximal velocity was attained, 𝑉�++O! 

is the maximal velocity with which L-DOPA was converted to DA, [𝐿𝐷𝑂𝑃𝐴] is the L-DOPA 

concentration. 

Transport Flux of Exogenous L-DOPA into the Terminal 

The flux of exogenous L-DOPA transported into the terminal through AAT while competing 

with other aromatic amino acids(Reed et al., 2012) is given by, 

 
𝐽++# = 𝑉�++# ∗

[𝐿𝐷𝑂𝑃𝐴1]

U𝐾FOP&+- ∗ U1 + P
[𝑇𝑌𝑅1]
𝐾#"M-

Q + P[𝑇𝑅𝑃1]𝐾#M&-
QW + [𝐿𝐷𝑂𝑃𝐴1]W

 
(70) 

 

where, 𝐾FOP&+- is the extracellular L-DOPA concentration at which half-maximal velocity was 

attained, 𝑉�++# is the maximal velocity with which extracellular L-DOPA was transported into 

the cytosol, [𝐿𝐷𝑂𝑃𝐴1] is the extracellular L-DOPA concentration, [𝑇𝑌𝑅1] is the extracellular 

TYR concentration, [𝑇𝑅𝑃1] is the extracellular tryptophan (TRP) concentration, 𝐾#"M- is the 

affinity constant for [𝑇𝑌𝑅1], 𝐾#M&- is the affinity constant for [𝑇𝑅𝑃1]. 

When L-DOPA drug therapy is initiated, 

 [𝐿𝐷𝑂𝑃𝐴1] = [𝑠𝐿𝐷] (71) 

 

When no L-DOPA drug therapy is initiated, 

 𝐿𝐷𝑂𝑃𝐴1 = 0 (72) 

 

The L-DOPA concentration ([𝐿𝐷𝑂𝑃𝐴]) dynamics inside the terminal is given by, 

 𝑑([𝐿𝐷𝑂𝑃𝐴])
𝑑𝑡 = 𝐽++# − 𝐽FOP&+ + 𝐽$"%# (73) 

 

where, 𝐽++# represents the flux of exogenous L-DOPA transported into the cytosol, 𝐽FOP&+ 

represents the conversion flux of exogenous L-DOPA into DA, 𝐽$"%# represents the flux of 

synthesized LDOPA from tyrosine, and [𝑠𝐿𝐷] is the serum L-DOPA concentration. 



Table S4.1: Parameter values for DA turnover processes of SNc cell model (Reed et al., 2012; 

Tello-Bravo, 2012). 

Constant Symbol Value Units 

Average release flux per vesicle 𝜓 17.4391793 𝑚𝑀 ∗𝑚𝑠48 

Initial vesicular DA concentration 𝐷𝐴[+ 500	 𝑚𝑀 

Sensitivity to vesicular DA 

concentration 
𝐷𝐴[, 0.01 𝑚𝑀 

Affinity constant of DA binding to 

receptors 
𝐷𝐴]& 5	𝑥	1049 𝑚𝑀 

Binding sensitivity 𝐷𝐴], 0.01 𝑚𝑀 

Activation constant for ATP 𝐾+,]]^ 1.4286 𝑚𝑀 

Vesicle recycling maximal flux 𝑣̅%MM& 1	𝑥	104A 𝑚𝑀 ∗𝑚𝑠48 

Maximal vesicle recycling efficiency 𝜂̅%MM& 0.995 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Maximal fraction of 𝑎𝑠𝑦𝑛∗ effect on 

the vesicle 
𝛽%MM&,+$"%$%, 0.08 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Affinity constant for 𝑎𝑠𝑦𝑛∗ 𝐾+$"%$%, 8.5	𝑥	104A 𝑚𝑀 

Reaction constant of 𝐷𝐴1 clearance 𝑘!P'# 0.0083511 𝑚𝑠48 

Tyrosine concentration [𝑇𝑌𝑅] 126	𝑥	104A 𝑚𝑀 

Affinity constant for 𝑇𝑌𝑅 𝐾Df] 46	𝑥	104A 𝑚𝑀 

Inhibition constant for 𝐷𝐴! 𝐾.,!O+ 11	𝑥	104H 𝑚𝑀 

Inhibition constant for 𝐷𝐴1 𝐾.,1O+ 46	𝑥	104A 𝑚𝑀 

Maximal velocity of DA synthesis 𝑉�$"%# 25	𝑥	104? 𝑚𝑀 ∗𝑚𝑠48 

Affinity constant for 𝐶𝑎. 𝐾$"%# 35	𝑥	104K 𝑚𝑀 

Maximal velocity of VMAT 𝑉�!O+ 4.67	𝑥	104? 𝑚𝑠48 



Affinity constant for 𝐷𝐴! 𝐾!O+ 238	𝑥	104K 𝑚𝑀 

Scaling factor for VMAT 𝛼['+# 1	𝑥	104A 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Scaling factor for 𝐴𝑇𝑃. 𝛽['+# 3 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Reaction constant of 𝐷𝐴! clearance 𝑘'+P 0.00016 𝑚𝑠48 

Maximal velocity of AADC 𝑉�++O! 9.73	𝑥	1049 𝑚𝑀 ∗𝑚𝑠48 

Affinity constant for 𝐿𝐷𝑂𝑃𝐴 𝐾++O! 0.13 𝑚𝑀 

Maximal velocity of AAT 𝑉�++# 5.11	𝑥	104; 𝑚𝑀 ∗𝑚𝑠48 

Affinity constant for 𝐿𝐷𝑂𝑃𝐴1 𝐾FOP&+- 3.2	𝑥	104K 𝑚𝑀 

Affinity constant for 𝑇𝑌𝑅1 𝐾#"M- 6.4	𝑥	104K 𝑚𝑀 

Affinity constant for 𝑇𝑅𝑃1 𝐾#M&- 1.5	𝑥	104K 𝑚𝑀 

Serum concentration of TYR [𝑇𝑌𝑅1] 6.3	𝑥	104K 𝑚𝑀 

Serum concentration of TRP [𝑇𝑅𝑃1] 8.2	𝑥	104K 𝑚𝑀 

Serum concentration of LDOPA [𝑠𝐿𝐷] 3.6	𝑥	104A 𝑚𝑀 

 

Table S4.2: Steady state values of DA turnover processes of SNc cell model (Reed et al., 2012; 

Tello-Bravo, 2012). 

Symbol Value Symbol Value 

[𝐷𝐴1] 4	𝑥	104?	𝑚𝑀 [𝐷𝐴[] 500	𝑚𝑀 

[𝐷𝐴!] 1	𝑥	104K	𝑚𝑀 [𝐿𝐷𝑂𝑃𝐴] 3.6	𝑥	104K	𝑚𝑀 

 

S5: Connectivity in the Model 

Table S5: Connectivity patterns in the proposed LIT model (Oorschot, 1996). 



From – to Pattern (signal) 

SNc (soma) – SNc (terminal) 1 to 16 (Calcium) 

SNc (terminal) – D1-MSN (GS) 20 to 1 (Dopamine) 

SNc (terminal) – D1-MSN (G) 20 to 1 (Dopamine) 

D1-MSN (GS) – D1-MSN (G) 1 to 1 (GABA & SP) 

D1-MSN (G) – D1-MSN (GS) 1 to 1 (GABA) 

D1-MSN (GS) – SNc (soma) 200 to 1 (GABA & SP) 

D1-MSN (G) – SNc (soma) 200 to 1 (GABA) 

STN – GPe 1 to 1 (Glutamate) 

GPe – STN 1 to 1 (GABA) 

STN – SNc (soma) 16 to 1 (Glutamate) 

CTX – D1-MSN (GS) 1 to 1 (Glutamate) 

CTX – D1-MSN (G) 1 to 1 (Glutamate) 

STN – STN Gaussian neighborhoods (Glutamate) 

GPe – GPe Gaussian neighborhoods (GABA) 

SNc – SNc Gaussian neighborhoods (GABA) 

 

S6: Parameter Values of Connectivity 

Table S6: Parameter values of the connectivity used in the proposed model of LIT (Terman et 

al., 2002; Reed et al., 2012; Buxton et al., 2017). 

Parameter Value Parameter Value 

Number of laterals (𝑛𝑙𝑎𝑡U) 5 𝜃h 20	𝑚𝑉 

Radius of Gaussian laterals 

(𝑅U) 
1.6 𝜃hE −57	𝑚𝑉 



Synaptic strength within 

laterals (𝐴U) 
0.1 𝜎hE 2	𝑚𝑉 

Synaptic conductance A𝑊U→"C 0.01 𝛼 2	𝑚𝑠48 

Synaptic potential of GABA 

receptor	(𝐸j\k\) 
63.45	𝑚𝑉 𝛽 0.08	𝑚𝑠48 

𝑠'+UlD*  1.3 𝑐𝑑$#% 4.87 

𝑠'.%j^1 0.1 𝑐𝑑h&1 7 

𝑠'.%l*! 1	𝑥104? 𝑐𝑑$%! 4.6055 

𝑐𝑑2 0.1 𝑤$& 5000 

𝐾el* 0.0289	 𝐿el* 0.331 

𝛼2\
284el*(j) 1 𝛼2\

284el*(jl) 2 

𝑤j^1→j^1 1 𝑤l*!→l*! 0.01 

𝑤lD*→j^1 1 𝑤j^1→lD* 20 

𝑤lD*→lD* 1.3 𝑤lD*→l*! 0.3 

𝑤284el*	(j)→l*! 0.5 𝑤284el*	(jl)→l*! 0.5 

𝑤284el*	(j)→284el*	(jl) 500 𝑤,D0→284el*	(jl) 100 

𝑤,D0→284el*	(j) 100 𝜏O
$& 40	𝑚𝑠 

𝜏L
$& 200	𝑚𝑠 𝜏M

$& 10	𝑚𝑠 

𝛽$& 0.47 𝜆$& 5.5 

𝑏$& 2.5 𝐹lD*→l*! 1	𝑥1049 

𝐹284el*	(j)→l*! 4.15	𝑥104? 𝐹284el*	(jl)→l*! 4.15	𝑥104? 

𝑉#M+%$'+U  5.11	𝑥104;	𝑚𝑀.𝑚𝑠48 𝐾'
/2n^\, 0.032	𝑚𝑀 

[𝑇𝑌𝑅$] 0.063	𝑚𝑀 𝐾+
Df], 0.064	𝑚𝑀 



 

S7: Receptor model (Destexhe et al., 1998) 

AMPA/Kainate Receptors 

The simplest model that approximates the kinetics of the fast AMPA/kainate type of glutamate 

receptors can be represented by the two-state diagram: 

 𝐶 + 𝑇	
(o g⁄ )
���� 	𝑂  (74) 

 

where, 𝛼 and 𝛽 are voltage-independent forward and backward rate constants, 𝐶 is the closed 

state of the receptor, 𝑂 is the open state of the receptor, and 𝑇 is the neurotransmitter. If 𝑟 is 

defined as the fraction of the receptors in the open state, it is then described by the following 

first-order kinetic equation: 

 𝑑(𝑟)
𝑑𝑡 = 𝛼 ∗ [𝑇] ∗ (1 − 𝑟) − 𝛽 ∗ 𝑟 (75) 

 

and the postsynaptic current (𝐼\e^\) is given by, 

 𝐼\e^\ = 𝑔̅\e^\ ∗ 𝑟 ∗ (𝑉 − 𝐸\e^\) (76) 

 

where, 𝑔̅\e^\ is the maximal conductance, 𝐸\e^\ is the reversal potential, 𝑉 is the postsynaptic 

membrane potential, [𝑇] is the neurotransmitter, and 𝑟 is the fraction of the receptors in the 

open state. 

NMDA Receptors 

[𝑇𝑅𝑃$] 0.082	𝑚𝑀 𝐾+
D] ,̂ 0.015	𝑚𝑀 

𝑃$P'+$%!  64 𝑃#1M'.%+F$%!  1024 

𝐸𝑅#qM1$ 2.15	𝑥104A	𝑚𝑀 𝑅𝑂𝑆#qM1$ 0.0147	𝑚𝑀 

𝑀𝑇#qM1$ 0.0215	𝑚𝑀   



The slower NMDA type of glutamate receptors can be represented with a two-state model 

similar to AMPA/kainate receptors, with a voltage-dependent term representing magnesium 

block. Using the scheme in Eqs. 1 and 2, the postsynaptic current is given by 

 𝐼*e2\ = 𝑔̅*e2\ ∗ 𝑟 ∗ 𝐵(𝑉) ∗ (𝑉 − 𝐸*e2\) (77) 

 

where, 𝑔̅*e2\ is the maximal conductance, 𝐸*e2\ is the reversal potential, 𝐵(𝑉) is the 

magnesium block, 𝑉 is the postsynaptic membrane potential, and 𝑟 is the fraction of the 

receptors in the open state. 

 𝐵(𝑉) =
1

1 + P[𝑀𝑔
H7]

3.57 ∗ 𝑒4W.W?H	∗	6Q
 (78) 

 

where, [𝑀𝑔H7] is the external magnesium concentration, and 𝑉 is the postsynaptic membrane 

potential. 

GABAA Receptors 

GABAA receptors can also be represented by the scheme in Eqs. 1 and 2, with the postsynaptic 

current given by 

 𝐼j\k\/ = 𝑔̅j\k\/ ∗ 𝑟 ∗ A𝑉 − 𝐸j\k\/C (79) 

 

where, 𝑔̅j\k\/ is the maximal conductance, 𝐸j\k\/ is the reversal potential, 𝑉 is the 

postsynaptic membrane potential, and 𝑟 is the fraction of the receptors in the open state. 

GABAB Receptors 

The stimulus dependency of GABAB responses, unfortunately, cannot be handled correctly by 

a two-state model. The simplest model of GABAB-mediated currents has two variables: 

 𝑑(𝑟)
𝑑𝑡 = 𝐾8 ∗ [𝑇] ∗ (1 − 𝑟) − 𝐾H ∗ 𝑟 (80) 

 

 𝑑(𝑠)
𝑑𝑡 = 𝐾A ∗ 𝑟 − 𝐾K ∗ 𝑠 (81) 



 

and the postsynaptic current A𝐼j\k\0C is given by, 

 𝐼j\k\0 = 𝑔̅j\k\0 ∗
𝑠%

𝑠% + 𝐾O
∗ A𝑉 − 𝐸j\k\0C (82) 

 

where, 𝑔̅j\k\0 is the maximal conductance, 𝐸j\k\0 	(= 𝑉-) is the reversal potential, 𝑉 is the 

postsynaptic membrane potential, 𝑟 is the fraction of the receptors in the open state, 𝑠 is the 

fraction of activated G-proteins, 𝐾O is the dissociation constant of the binding of 𝑠 on the K+ 

channels, 𝐾8 and 𝐾H are voltage-independent forward and backward rate constants for 𝑟, 𝐾A 

and 𝐾K are voltage-independent forward and backward rate constants for 𝑠, and [𝑇] is the 

neurotransmitter. 

Overall Synaptic Current 

The overall synaptic input current flux A𝐽$"%C to SNc neuron is given by, 

 𝐽$"% = −
1

𝐹 ∗ 𝑣!"#
∗ A𝐼\e^\ + 𝐼*e2\ + 𝐼j\k\/ + 𝐼j\k\0C (83) 

 

where, 𝐼\e^\ is the excitatory AMPA synaptic current, 𝐼*e2\ is the excitatory NMDA synaptic 

current,  𝐼j\k\/ is the inhibitory GABAA synaptic current, 𝐼j\k\0 is the inhibitory GABAB 

synaptic current,  𝐹 is the Faraday’s constant, and 𝑣!"# is the cytosolic volume. 

Table S7: Parameter values of receptor models (Destexhe et al., 1998; Francis et al., 2013) 

Constant Symbol Value Units 

Faraday’s constant 𝐹 96485 𝑐𝑜𝑢𝑙𝑜𝑚𝑏 ∗ 𝑚𝑜𝑙𝑒48 

Cytosolic volume 𝑣!"# 𝜙!"# ∗ 𝑣&'( 𝑝𝑙 

Fraction of cytosolic volume 𝜙!"# 0.5 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Pacemaking unit (PMU) volume 𝑣&'( 5 𝑝𝑙 



Maximal conductance of AMPA 

receptor 
𝑔̅\e^\ 0.35 − 1 𝑛𝑆 

Maximal conductance of NMDA 

receptor 
𝑔̅*e2\ 0.01 − 0.6 𝑛𝑆 

Concentration of Magnesium  [𝑀𝑔H7] 1 − 2	 𝑚𝑀 

Maximal conductance of GABAA 

receptor 
𝑔̅j\k\/ 0.25 − 1.2 𝑛𝑆 

Maximal conductance of GABAB 

receptor 
𝑔̅j\k\0 0.06 𝑛𝑆 

Dissociation constant of the 

binding of 𝑠 on the K+ channels 
𝐾O 100 𝜇𝑀K 

Voltage-independent forward rate 

constant for 𝑟 of GABAB  
𝐾8 9	𝑥	10K 𝑀48 ∗ 𝑠𝑒𝑐48 

Voltage-independent backward 

rate constant for 𝑟 of GABAB 
𝐾H 1.2 𝑠𝑒𝑐48 

Voltage-independent forward rate 

constant for 𝑠 of GABAB 
𝐾A 180 𝑠𝑒𝑐48 

Voltage-independent backward 

rate constant for 𝑠 of GABAB 
𝐾K 34 𝑠𝑒𝑐48 

Cooperativity constant (binding 

sites) 
𝑛 4 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Reversal potential of AMPA 𝐸\e^\ 0 𝑚𝑉 

Reversal potential of NMDA 𝐸*e2\ 0 𝑚𝑉 

Reversal potential of GABAA 𝐸rsts/ −80 𝑚𝑉 

Reversal potential of GABAB 𝐸rsts0 −95 𝑚𝑉 

AMPA 1.1	𝑥	10? 𝑀48 ∗ 𝑠𝑒𝑐48 



Voltage-independent forward rate 

constant for 𝑟 (𝛼) 

NMDA 7.2	𝑥	10K 𝑀48 ∗ 𝑠𝑒𝑐48 

GABAA 5	𝑥	10? 𝑀48 ∗ 𝑠𝑒𝑐48 

Voltage-independent backward 

rate constant for 𝑟 (𝛽) 

AMPA 190 𝑠𝑒𝑐48 

NMDA 6.6 𝑠𝑒𝑐48 

GABAA 180 𝑠𝑒𝑐48 

 

S8: Calcium Dynamics (Muddapu and Chakravarthy, 2021) 

Intracellular calcium plays an essential role in the normal functioning of the cell. In order to 

maintain calcium homeostasis, the intracellular calcium levels are tightly regulated by calcium 

buffering mechanisms such as calcium-binding proteins, endoplasmic reticulum (ER), and 

mitochondria (MT) (Alzheimer, 2003). 

 

Figure S8: Schematic of calcium dynamics in the SNc cell model. 

The intracellular calcium concentration dynamics ([𝐶𝑎.]) after including calcium 

buffering mechanisms (Marhl et al., 2000; Francis et al., 2013) (Figure S8) is given by, 



 
𝑑([𝐶𝑎.])
𝑑𝑡 = 𝐽',,+ − 𝐽!+FN − 4 ∗ 𝐽!+' − 𝐽$1M!+,1M + 𝐽!q,1M + 𝐽F1+G,1M

− 𝐽'!(,'# + 𝐽P(#,'# 
(84) 

 

where, 𝐽',,+ is the flux of calcium ion channels, 𝐽!+FN is the calcium buffering flux by calbindin, 

𝐽!+' is the calcium buffering flux by calmodulin, 𝐽$1M!+,1M is the calcium buffering flux by ER 

uptake of calcium through sarco/endoplasmic reticulum calcium-ATPase (SERCA), 𝐽!q,1M is 

the calcium efflux from ER by calcium-induced calcium release (CICR) mechanism, 𝐽F1+G,1M is 

the calcium leak flux from ER, 𝐽'!(,'# is the calcium buffering flux by MT uptake of calcium 

through mitochondrial calcium uniporters (MCUs), and 𝐽P(#,'# is the calcium efflux from MT 

through sodium-calcium exchangers, mitochondrial permeability transition pores (mPTPs), 

and non-specific leak flux. 

The calcium buffering flux by calbindin (𝐽!+FN) is given by, 

 𝐽!+FN = 𝑘8,!+FN ∗ [𝐶𝑎.] ∗ [𝐶𝑎𝑙𝑏] − 𝑘H,!+FN ∗ [𝐶𝑎𝐶𝑎𝑙𝑏] (85) 

 

 [𝐶𝑎𝐶𝑎𝑙𝑏] = [𝐶𝑎𝑙𝑏#P#] − [𝐶𝑎𝑙𝑏] (86) 

 

 𝑑([𝐶𝑎𝑙𝑏])
𝑑𝑡 = −𝐽!+FN (87) 

 

where, A𝑘8,!+FN , 𝑘H,!+FNC are the calbindin reaction rates, [𝐶𝑎.] is the intracellular calcium 

concentration, [𝐶𝑎𝑙𝑏] is the calbindin concentration, [𝐶𝑎𝐶𝑎𝑙𝑏] is the calcium-bound calbindin 

concentration, and [𝐶𝑎𝑙𝑏#P#] is the total cytosolic calbindin concentration. 

The calcium buffering flux by calmodulin (𝐽!+') is given by, 

 𝐽!+' = 𝛼!+' ∗ [𝐶𝑎𝑚] − 𝛽!+' ∗ [𝐶𝑎𝐶𝑎𝑚] (88) 

 

 [𝐶𝑎𝐶𝑎𝑚] = [𝐶𝑎𝑚#P#] − [𝐶𝑎𝑚] (89) 

 



 𝑑([𝐶𝑎𝑚])
𝑑𝑡 = −𝐽!+' (90) 

 

 𝛼!+' = 𝐾!+'!N ∗ 𝐾!+'%N ∗ x
1

𝐾!+'!N + 𝑘!+'%O +
1

𝑘!+'!O + 𝑘!+'%O y (91) 

 

 𝛽!+' = 𝑘!+'!O ∗ 𝑘!+'%O ∗ x
1

𝐾!+'!N + 𝑘!+'%O +
1

𝑘!+'!O + 𝑘!+'%O y (92) 

 

 𝐾!+'!N = 𝑘!+'!N ∗ [𝐶𝑎.]H; 												𝐾!+'%N = 𝑘!+'%N ∗ [𝐶𝑎.]H (93) 

 

where, (𝑘!+'%O , 𝑘!+'!O , 𝑘!+'!N , 𝑘!+'!N ) are the calmodulin reaction rates, [𝐶𝑎.] is the intracellular 

calcium concentration, [𝐶𝑎𝑚] is the calmodulin concentration, [𝐶𝑎𝐶𝑎𝑚] is the calcium-bound 

calmodulin concentration, and [𝐶𝑎𝑚#P#] is the total cytosolic calmodulin concentration. 

The calcium buffering flux by ER uptake of calcium through SERCA A𝐽$1M!+,1MC is 

given by, 

 𝐽$1M!+,1M = 𝑘$1M!+,1M ∗ [𝐶𝑎.] ∗ [𝐴𝑇𝑃.] (94) 

 

where, 𝑘$1M!+,1M is the maximal rate constant of SERCA, [𝐶𝑎.] is the intracellular calcium 

concentration, and [𝐴𝑇𝑃.] is the intracellular ATP concentration. 

The calcium efflux from ER by CICR A𝐽!.!M,1MC is given by, 

 𝐽!q,1M = 𝑘!.!M,1M ∗ U
[𝐶𝑎.]H

𝐾!.!M,1MH + [𝐶𝑎.]H
W ∗ ([𝐶𝑎1M] − [𝐶𝑎.]) (95) 

 

where, 𝑘!q,1M is the maximal permeability of calcium channels in the ER membrane, 𝐾!q,1M is 

the half-saturation for calcium, [𝐶𝑎.] is the intracellular calcium concentration, and [𝐶𝑎1M] is 

the ER calcium concentration. 

The calcium leak flux from ER A𝐽F1+G,1MC is given by, 



 𝐽F1+G,1M = 𝑘F1+G,1M ∗ ([𝐶𝑎1M] − [𝐶𝑎.]) (96) 

 

where, 𝑘F1+G,1M is the maximal rate constant for calcium leak flux through the ER membrane, 

[𝐶𝑎.] is the intracellular calcium concentration, and [𝐶𝑎1M] is the ER calcium concentration. 

The ER calcium concentration ([𝐶𝑎1M]) dynamics is given by, 

 
𝑑([𝐶𝑎1M])

𝑑𝑡 =
𝛽1M
𝜌1M

∗ A𝐽$1M!+,1M − 𝐽!q,1M − 𝐽F1+G,1MC (97) 

 

where, 𝛽1M is the ratio of free calcium to total calcium concentration in the ER, 𝜌1M is the 

volume ratio between the ER and cytosol, 𝐽$1M!+,1M is the calcium buffering flux by ER uptake 

of calcium through SERCA, 𝐽!q,1M is the calcium efflux from ER by CICR mechanism, and 

𝐽F1+G,1M is the calcium leak flux from ER. 

The calcium buffering flux by MT uptake of calcium through MCUs A𝐽'!(,'#C is given 

by, 

 𝐽'!(,'# = 𝑘'!(,'# ∗ U
[𝐶𝑎.]J

𝐾'!(,'#J + [𝐶𝑎.]J
W (98) 

 

where, 𝑘'!(,'# is the maximal permeability of mitochondrial membrane calcium uniporters, 

𝐾'!(,'# is the half-saturation for calcium, and [𝐶𝑎.] is the intracellular calcium concentration. 

The calcium efflux from MT through sodium-calcium exchangers, mPTPs, and non-

specific leak flux A𝐽P(#,'#C is given by, 

 𝐽P(#,'# = U𝑘P(#,'# ∗ U
[𝐶𝑎.]H

𝐾P(#,'#H + [𝐶𝑎.]H
W + 𝑘F1+G,'#W ∗ [𝐶𝑎'#] (99) 

 

where, 𝑘P(#,'# is the maximal rate of calcium flux through sodium-calcium exchangers and 

mitochondrial permeability transition pores, 𝐾P(#,'# is the half-saturation for calcium, 𝑘F1+G,'# 

is the maximal rate constant for calcium leak flux through the MT membrane, [𝐶𝑎.] is the 

intracellular calcium concentration, and [𝐶𝑎'#] is the MT calcium concentration. 



The MT calcium concentration ([𝐶𝑎'#]) dynamics is given by, 

 
𝑑([𝐶𝑎'#])

𝑑𝑡 =
𝛽'#
𝜌'#

∗ A𝐽'!(,'# − 𝐽P(#,'#C (100) 

 

where, 𝛽'# is the ratio of free calcium to total calcium concentration in the ER, 𝜌'# is the 

volume ratio between the MT and cytosol, 𝐽'!(,'# is the calcium buffering flux by MT uptake 

of calcium through MCUs, and 𝐽P(#,'# is the calcium efflux from MT through sodium-calcium 

exchangers, mPTPs, and non-specific leak flux. 

The total instantaneous concentration of calcium ([𝐶𝑎#P#]) in the SNc cell at a given 

time 𝑡 is given by, 

 
[𝐶𝑎#P#](𝑡) = [𝐶𝑎.](𝑡) +

𝜌1M
𝛽1M

∗ [𝐶𝑎1M](𝑡) +
𝜌'#
𝛽'#

∗ [𝐶𝑎'#](𝑡)

+ [𝐶𝑎𝐶𝑎𝑙𝑏](𝑡) + [𝐶𝑎𝐶𝑎𝑚](𝑡) 
(101) 

 

where, 𝛽1M is the ratio of free calcium to total calcium concentration in the ER, 𝜌1M is the 

volume ratio between the ER and cytosol, 𝛽'# is the ratio of free calcium to total calcium 

concentration in the ER, 𝜌'# is the volume ratio between the MT and cytosol, [𝐶𝑎.](𝑡), 

[𝐶𝑎1M](𝑡), [𝐶𝑎'#](𝑡), [𝐶𝑎𝐶𝑎𝑙𝑏](𝑡), and [𝐶𝑎𝐶𝑎𝑚](𝑡) are the instantaneous concentration of 

intracellular (cytoplasmic) calcium, ER calcium, MT calcium, calcium-bound calbindin, and 

calcium-bound calmodulin, respectively. 

Table S8.1: Parameter values of calcium buffering mechanisms of SNc cell model (Marhl et 

al., 2000; Francis et al., 2013). 

Constant Symbol Value Units 

Calbindin reaction rates 𝑘8,!+FN 10 𝑚𝑀48 ∗ 𝑚𝑠48 

 𝑘H,!+FN 2	𝑥	104A 𝑚𝑠48 

Total cytosolic calbindin 

concentration 
[𝐶𝑎𝑙𝑏#P#] 0.005 𝑚𝑀 

Calmodulin reaction rates 𝑘!+'!N  12000 𝑚𝑀4H ∗ 𝑚𝑠48 



 𝑘!+'%N  3.7	𝑥	10? 𝑚𝑀4H ∗ 𝑚𝑠48 

 𝑘!+'!O  3	𝑥	104A 𝑚𝑠48 

 𝑘!+'%O  3 𝑚𝑠48 

Total cytosolic calmodulin 

concentration 
[𝐶𝑎𝑚#P#] 0.0235 𝑚𝑀 

The maximal rate constant of 

SERCA 
𝑘$1M!+,1M 0.02 𝑚𝑀48 ∗ 𝑚𝑠48 

Maximal permeability of calcium 

channels in the ER membrane 
𝑘!q,1M 3 𝑚𝑠48 

Half saturation for calcium 𝐾!q,1M 0.005 𝑚𝑀 

Maximal rate constant for calcium 

leak flux through the ER 

membrane 

𝑘F1+G,1M 5	𝑥	1049 𝑚𝑠48 

Ratio of free calcium to total 

calcium concentration in ER 
𝛽1M 0.0025 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Volume ratio between the ER and 

cytosol 
𝜌1M 0.01 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Maximal permeability of MCUs 𝑘'!(,'# 3	𝑥	104K 𝑚𝑀 ∗𝑚𝑠48 

Half saturation for calcium 𝐾'!(,'# 8	𝑥	104K 𝑚𝑀 

Maximal rate of calcium flux 

through [𝑁𝑎7]/[𝐶𝑎H7] 

exchangers and mPTPs 

𝑘P(#,'# 0.125 𝑚𝑠48 

Half saturation for calcium 𝐾P(#,'# 0.005 𝑚𝑀 

Maximal rate constant for calcium 

leak flux through the MT 

membrane 

𝑘F1+G,'# 6.25	𝑥	104? 𝑚𝑠48 



Ratio of free calcium to total 

calcium concentration in MT 
𝛽'# 0.0025 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Volume ratio between the MT and 

cytosol 
𝜌'# 0.01 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

 

Table S8.2: Steady state values of calcium buffering mechanisms of SNc cell model (Marhl et 

al., 2000; Francis et al., 2013). 

Symbol Value Symbol Value 

[𝐶𝑎1M] 1	𝑥	104A	𝑚𝑀 [𝐶𝑎𝑙𝑏] 26	𝑥	104K	𝑚𝑀 

[𝐶𝑎'#] 4	𝑥	104K	𝑚𝑀 [𝐶𝑎𝑚] 222	𝑥	104K	𝑚𝑀 

 

S8: Molecular Pathways Involved in PD Pathology (Muddapu and Chakravarthy, 2021) 

ROS formation occurs due to leakage from mitochondria during oxidative phosphorylation for 

ATP production, auto-oxidation of excess freely available DA in the cytoplasm, and misfolded 

alpha-synuclein (𝐴𝑆𝑌𝑁'.$). In the present model, excess ROS is scavenged by glutathione. 

Under pathological conditions such as elevated ROS levels, normal alpha-synuclein (𝐴𝑆𝑌𝑁) 

undergoes conformation changes into misfolded alpha-synuclein. The misfolded alpha-

synuclein is tagged (𝐴𝑆𝑌𝑁#+h) and degraded by the ubiquitous-proteasome pathway using 

ATP. Excess misfolded alpha-synuclein forms aggregates, which in turn gets degraded by the 

lysosomal degradation pathway using ATP. In some scenarios, these alpha-synuclein 

aggregates (𝐴𝑆𝑌𝑁+hh) form Lewy bodies (𝐿𝐵𝑠). 



 

Figure S9: Schematic of molecular pathways in PD pathology in the SNc cell model. 

The model consists of ROS formation from different processes, including ROS 

scavenging mechanism, alpha-synuclein aggregation, proteasomal and lysosomal degradation 

of damaged protein, etc. The following equations give a concise view of all metabolite 

dynamics in the PD pathology pathways, 

Reactive oxygen species: 𝑑([𝑅𝑂𝑆])
𝑑𝑡 = 𝐽F1+G + 𝐽1%[ + 𝐽OP&+ − 𝐽!+# − 𝐽OPU (102) 

 

Alpha-synuclein: 𝑑([𝐴𝑆𝑌𝑁])
𝑑𝑡 = 𝐽$"% − 𝐽PU − 𝐽#P (103) 

 

Misfolded alpha-synuclein: 𝑑([𝐴𝑆𝑌𝑁'.$])
𝑑𝑡 = 𝐽PU − 𝐽+hh − 𝐽#+h (104) 

 

Tagged alpha-synuclein: 𝑑(8𝐴𝑆𝑌𝑁#+h;)
𝑑𝑡 = 𝐽#+h − 𝐽&M# (105) 

 



Aggregated alpha-synuclein: 𝑑(8𝐴𝑆𝑌𝑁+hh;)
𝑑𝑡 = 𝐽+hh − 𝐽F"$P − 𝐽FN (106) 

 

Lewy bodies: 𝑑([𝐿𝐵])
𝑑𝑡 = 𝐽FN (107) 

  

where, 𝐽F1+G is the flux of oxidative stress due to mitochondrial leakage,  𝐽1%[ is the flux of 

external oxidative stress (includes environmental toxins, inflammatory responses, etc.), 𝐽OP&+ 

is the flux of oxidative stress due to excess cytoplasmic dopamine, 𝐽!+# is the catabolizing flux 

of ROS by catalase enzyme, 𝐽OPU is the flux of GSH-dependent ROS scavenging pathway (Eq. 

104), 𝐽$"% is the synthesizing flux of alpha-synuclein protein, 𝐽PU is the flux of alpha-synuclein 

misfolding due to ROS, 𝐽#P is the usage flux of alpha-synuclein in other processes, 𝐽+hh is the 

flux of alpha-synuclein aggregation, 𝐽#+h is the flux of ATP-dependent ubiquitination of 

damaged protein for proteasomal degradation, 𝐽&M# is the flux of ATP-dependent breakdown of 

damaged protein through proteasomal degradation, 𝐽F"$P is the flux of ATP-dependent 

breakdown of aggregated protein through lysosomal degradation, and 𝐽FN is the flux of LBs 

formation. 

 The flux of oxidative stress due to mitochondrial leakage (𝐽F1+G) is given by, 

 𝐽F1+G = P
𝐾+,F1+G
[𝐴𝑇𝑃.]

Q ∗ A1 − 𝜂P&C ∗ 𝐽P& (108) 

 

where, 𝐽P& is the flux of the oxidative phosphorylation pathway, 𝜂P& is the electron transport 

chain efficiency, [𝐴𝑇𝑃.] is the intracellular ATP concentration, and 𝐾+,\D^ is the activation 

constant for ATP. 

 The flux of oxidative stress due to excess dopamine in the cytoplasm A𝐽OP&+C is given 

by, 

 𝐽OP&+ = 𝑘OP&+ ∗
[𝐷𝐴!]

[𝐷𝐴!] + 8𝐾OP&+;
 (109) 

 



where, 𝑘OP&+ is the reaction constant for ROS production by excess dopamine, [𝐷𝐴!] is the 

cytoplasmic dopamine concentration, and 𝐾OP&+ is the affinity constant for [𝐷𝐴!]. 

 The catabolizing flux of ROS by catalase enzyme (𝐽!+#) is given by, 

 𝐽!+# = 𝑘!+# ∗ [𝑅𝑂𝑆] (110) 

 

where, 𝑘!+# is the reaction constant for catalase, and [𝑅𝑂𝑆] is the ROS concentration. 

 The synthesizing flux of alpha-synuclein protein A𝐽$"%C is given by, 

 𝐽$"% = 𝑘$"% (111) 

 

where, 𝑘$"% is the reaction constant for alpha-synuclein synthesis. 

 The flux of alpha-synuclein misfolding due to ROS (𝐽PU) is given by, 

 𝐽PU = 𝑘PU ∗ [𝐴𝑆𝑌𝑁] ∗ [𝑅𝑂𝑆] (112) 

 

where, 𝑘PU is the reaction constant for alpha-synuclein oxidation, [𝐴𝑆𝑌𝑁] is the alpha-

synuclein concentration, and [𝑅𝑂𝑆] is the ROS concentration. 

 The usage flux of alpha-synuclein in other processes (𝐽#P) is given by, 

 𝐽#P = 𝑘#P ∗ [𝐴𝑆𝑌𝑁] (113) 

 

where, 𝑘#P is the reaction constant for alpha-synuclein consumption, and [𝐴𝑆𝑌𝑁] is the alpha-

synuclein concentration. 

 The flux of alpha-synuclein aggregation A𝐽+hhC is given by, 

 𝐽+hh = 𝑘+hh ∗ [𝐴𝑆𝑌𝑁'.$] ∗
[𝐴𝑆𝑌𝑁'.$]?

[𝐴𝑆𝑌𝑁'.$]? + 𝐾+hh?  (114) 

 

where, 𝑘+hh is the reaction constant for alpha-synuclein aggregation, [𝐴𝑆𝑌𝑁'.$] is the 

misfolded alpha-synuclein concentration, and 𝐾+hh is the affinity constant for [𝐴𝑆𝑌𝑁'.$]. 



 The flux of ATP-dependent ubiquitination of damaged protein for proteasomal 

degradation A𝐽#+hC is given by, 

 𝐽#+h = 𝑘#+h ∗ 𝐴𝑆𝑌𝑁'.$ ∗ [𝑈𝑏] ∗ [𝐴𝑇𝑃.] (115) 

 

 [𝑈𝑏] = [𝑈𝑏#P#] − 8𝐴𝑆𝑌𝑁#+h; (116) 

 

where, 𝑘#+h is the reaction constant for ubiquitination of damaged protein, [𝐴𝑆𝑌𝑁'.$] is the 

misfolded alpha-synuclein concentration, [𝑈𝑏] is the ubiquitin concentration, [𝐴𝑇𝑃.] is the 

intracellular ATP concentration, [𝑈𝑏#P#] is the total ubiquitin concentration, and 8𝐴𝑆𝑌𝑁#+h; is 

the tagged alpha-synuclein concentration. 

 The flux of ATP-dependent breakdown of damaged protein through proteasomal 

degradation A𝐽&M#C is given by, 

 𝐽&M# = 𝑘&M# ∗ 8𝐴𝑆𝑌𝑁#+h; ∗ [𝐴𝑇𝑃.] ∗ _1 − 𝛽&M# ∗ k
8𝐴𝑆𝑌𝑁+hh;

K

8𝐴𝑆𝑌𝑁+hh;
K + 𝐾&M#K

l` (117) 

 

where, 𝑘&M# is the reaction constant for damaged protein disposal by the proteasome, 

8𝐴𝑆𝑌𝑁#+h; is the tagged alpha-synuclein concentration, [𝐴𝑇𝑃.] is the intracellular ATP 

concentration, 8𝐴𝑆𝑌𝑁+hh; is the aggregated alpha-synuclein concentration, 𝐾&M# is the affinity 

constant for 8𝐴𝑆𝑌𝑁+hh;, and 𝛽&M# is the fraction reduction of proteasome activity by 

8𝐴𝑆𝑌𝑁+hh;. 

 The flux of ATP-dependent breakdown of aggregated protein through lysosomal 

degradation A𝐽F"$PC is given by, 

 𝐽F"$P = 𝑘F"$P ∗ 8𝐴𝑆𝑌𝑁+hh; ∗ [𝐴𝑇𝑃.] (118) 

 

where, 𝑘F"$P is the reaction constant for 8𝐴𝑆𝑌𝑁+hh; disposal by the lysosome, and [𝐴𝑇𝑃.] is 

the intracellular ATP concentration. 

 The flux of LB formation (𝐽FN) is given by, 



 𝑉FN = 𝑘FN ∗ 8𝐴𝑆𝑌𝑁+hh; ∗
8𝐴𝑆𝑌𝑁+hh;

?

8𝐴𝑆𝑌𝑁+hh;
? + 𝐾FN?

 (119) 

 

where, 𝑘FN is the reaction constant for Lewy bodies from 8𝐴𝑆𝑌𝑁+hh;, 8𝐴𝑆𝑌𝑁+hh; is the 

aggregated alpha-synuclein concentration, and 𝐾&M# is the affinity constant for 8𝐴𝑆𝑌𝑁+hh;. 

Table S9.1: Parameter values of PD pathology pathways of SNc cell model (Cloutier and 

Wellstead, 2012). 

Constant Symbol Value Units 

Activation constant for ATP 𝐾+,F1+G 0.5282 𝑚𝑀 

Reaction constant for ROS production 

due to excess dopamine 
𝑘OP&+ 	4.167	𝑥	104K 𝑚𝑀48 ∗ 𝑚𝑠48 

Affinity constant for [𝐷𝐴!] 𝐾OP&+ 8.5 𝑚𝑀 

Reaction constant for catalase 𝑘!+# 2.35	𝑥	1049 𝑚𝑠48 

Reaction constant for alpha-synuclein 

oxidation 
𝑘$"% 1.39	𝑥	104J 𝑚𝑀 ∗𝑚𝑠48 

Reaction constant for alpha-synuclein 

consumption 
𝑘#P 1.39	𝑥	104; 𝑚𝑠48 

Reaction constant for alpha-synuclein 

aggregation 
𝑘+hh 2.08	𝑥	1048W 𝑚𝑠48 

Affinity constant for 𝐴𝑆𝑌𝑁'.$ 𝐾+hh 7.5	𝑥	104A 𝑚𝑀 

Reaction constant for tagging of 

damaged protein 
𝑘#+h 7.64	𝑥	10488 𝑚𝑀48 ∗ 𝑚𝑠48 

Total ubiquitin concentration [𝑈𝑏#P#] 10.5	𝑥	104A 𝑚𝑀 

Reaction constant for damaged protein 

disposal by the proteasome 
𝑘&M# 2.08	𝑥	1048W 𝑚𝑠48 

Affinity constant for 𝐴𝑆𝑌𝑁+hh 𝐾&M# 5	𝑥	104A 𝑚𝑀 



Fraction reduction of proteasome 

activity by 𝐴𝑆𝑌𝑁+hh 
𝛽&M# 0.25 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

Reaction constant for 𝐴𝑆𝑌𝑁+hh 

disposal by lysosome 
𝑘F"$P 2.08	𝑥	10488 𝑚𝑠48 

Reaction constant for Lewy bodies 

from 𝐴𝑆𝑌𝑁+hh 
𝑘FN 2.08	𝑥	10488 𝑚𝑠48 

Affinity constant for 𝐴𝑆𝑌𝑁+hh 𝐾FN 5	𝑥	104A 𝑚𝑀 

 

Table S9.2: Steady state values of PD pathology pathways of SNc cell model (Cloutier and 

Wellstead, 2012). 

Symbol Value Symbol Value 

[𝑅𝑂𝑆] 1	𝑥	104A	𝑚𝑀 8𝐴𝑆𝑌𝑁#+h; 1	𝑥	1049	𝑚𝑀 

[𝐴𝑆𝑌𝑁] 0.1	𝑚𝑀 8𝐴𝑆𝑌𝑁+hh; 0	𝑚𝑀 

[𝐴𝑆𝑌𝑁'.$] 1	𝑥	104A	𝑚𝑀 [𝐿𝐵] 0	𝑚𝑀 
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