
Supplementary methods 
 

Ragwitz criterion 
Assuming the process X to be Markovian i.e. stochastic with finite memory, the dimension d and the 

delay τ can be reconstructed from univariate time series using Ragwitz criterion (Ragwitz and Kantz 

2002). For a given combination of d and τ, neighbours of every state xt within a spherical 

neighbourhood Uε of diameter ε are iterated one time step. The mean of iterated neighbours is the 

prediction �̂�t+1 of xt+1. 
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Where t-Δt indicates that spatial neighbours temporaly precede xt and |.| indicates the number of 

neighbours in Uε. The combination of d and τ is chosen for which the root mean squared prediction 

error is minimum: 
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where n is the number of states predicted.  

False nearest neighbours algorithm 
For deterministic systems, the phase-space dimension may be alternatively reconstructed using the 

false nearest neighbourhood method (FNN, Hegger and Kantz 1999): 

 FNN(d) =∑

θ(
|xi+1 − n(xi)j+1|

‖𝐱i
d − 𝐧xi

d ‖
− Rtol)

˄  θ (√(‖𝐱i
d − 𝐧xi

d ‖)
2
− (|xi+1 − n(xi)j+1|)

2
− SD(X) ∗ Atol) ,

 ( S3 ) 

 



with θ indicating the Heaviside-step function, i being the temporal index of x, j representing the 

temporal index of n, n(xi) indicating the next neighbor of xi,||..|| indicating the maximum norm, Rtol  

being a distance threshold, Atol being a loneliness threshold and SD indicating the standard 

deviation. If the embedding dimension is too low, false neighbours of points in phase-space may arise 

due to projections. The optimal embedding dimension is thus the dimension for which the percentage 

of false neighbours drops to zero.  

Auto-mutual information 
The embedding delay may be estimated using the auto-mutual information (AMI, Fraser and Swinney 

1986). Here, the shared information between the present and past of a process X is calculated as a 

function of a delay Δt. The Δt for which AMI drops to zero may be used as τ for the embedding:  

 

 
𝐴𝑀𝐼(Xt; Xt−Δt, Δt) = H(Xt) − H(Xt|Xt−Δt), ( S4 ) 

with 

 
H(X) = −∑p(X = x) log2 p(X = x) 

( S5 ) 

and p(X=x) being the probability of X taking on the value of x. 
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