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1 ACCURACY OF NEURAL NETWORKS
1.1 Training and validation data sets

The dataset used for evaluation of performance of generative models (see Section 3.2) consists of 341,433
molecules. The dataset was randomly split in two of the equal size: training and validation data sets, see
Fig S1. There is no noticeable difference in distribution of the excitation energies between two data sets,
and one can conclude that both data sets equally cover the selected region of the chemical space. Therefore,
the observed results of ML models performance should be insensitive to any random shuffles of molecules
between the data sets (i.e. insensitive to the particular random splitting).

Figure S1. Distributions of S1 (blue), T1 (orange) and T2 (green) energies for the training (left) and
validation (right) data sets, which were used for evaluation of performance of different ML models.

1.2 The JT-VAE generative neural network
The JT-VAE neural network was constructed with dimensionality of hidden and latent spaces equal

to 450 and 56 respectively. Depth of the graphs and the trees was chosen to be 3 and 20 respectively.
To ensure better performance of the autoencoder, the first 10000 steps (warmup) were done without
the Kullback-Leibler divergence loss. One of the most important parameters of the autoencoder it its
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reconstruction accuracy. Reconstruction accuracy as a function of the training timestep is presented in
Fig. S2 for all three networks, corresponding to TTF cores with zero, one and two side chains.

Figure S2. Reconstruction accuracy for JT-VAE NNs. Results for networks trained on datasets with 0, 1,
and 2 side chains are shown in graphs a), b) and c), respectively. Results for training and validation sets are
shown respectively in red and green.

Figure S2 shows that for all datasets, the reconstruction accuracy is close to 60-65%, with the exception
for 2 side chains, for which the accuracy is about 5 percentage points lower. Overall, the values correspond
quite well to the numbers on reconstruction accuracy reported in the original work on the Junction-Tree
VAE (Jin et al., 2018).
1.3 The JT-E model for energies prediction

Out of sample accuracy validation for three JT-E models trained on the sets with 0, 1 and 2 side chains
are presented in Table S1. It shows that the highest accuracy is achieved for the dataset with no side
chains. Datasets with 1 and 2 side chains feature higher chemical diversity, which makes predictions more
difficult. As a result, the accuracy decreases by ≈ 50% for molecules with 2 side chains compared to those
with no side chains. It turns out that predictions of singlet excitations are more difficult than for triplet
ones. Nevertheless, one can conclude that the prediction performance of JT-E NN is very good, nearly
comparable to the accuracy of the PM3 method, which can be measured on the order of ≈ 0.05 eV for the
molecules in question (see the discussion in Section 2.1).

2 SCREENING OF THE DATASET
2.1 Benchmarking the methods for computing excitation energies

Results of the validation are presented in Fig. S4. The linear fit used for bias correction is shown with
dotted lines. Compounds used in the validation are present in three traits: pure hydrocarbons, nitrogen-
and oxygen-containing molecules. These groups are scattered along similar trends in Fig. S4 and were
used in statistical analysis without distinction. Fig. S4 also illustrates a surprisingly poor performance of
multireference approach. While triplet energies are reasonably good, the prediction of singlet transitions
fails entirely. We attribute this issue to larger active spaces required to describe singlet excited states.

0 side chains 1 side chain 2 side chains
S1 T1 T2 S1 T1 T2 S1 T1 T2

MAE 0.104 0.054 0.086 0.139 0.079 0.117 0.155 0.098 0.123
RMSD 0.145 0.077 0.115 0.188 0.108 0.153 0.217 0.136 0.166

Table S1. Mean absolute and root-mean squared errors for JT-E models trained on datasets each comprising ∼ 450,000 molecules with 0, 1 and 2 side chains.
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Figure S3. Compounds constituting the validation dataset with known experimental S1 or T1 excitation
energies (referenced in Section 2.3 of the main text). Nitrogen atoms are highlighted with blue, oxygen
atoms with red color.

Although multireference calculations with the (12,12) active space are feasible for molecules of moderate
size, blind screening without manual inspection of every particular case seems to be impossible.

Actual values of the thresholds δa, δb and δc are affected by possible inaccuracies in the calculation of
energy levels. To find a reasonable estimate of δc, we can validate the predictions of corrected PM3 on
the experimental dataset (see Fig. S5). It can be seen that deviations are distributed non-uniformly, with
larger errors for larger values of δc. The worst results are for the six compounds with only one aromatic
ring (shown in red on Figure S5). In our search, we have focused on (presumably) larger molecules and
lower values of δc, so we should be concerned with only the left part of the plot in Fig. S5, demonstrating a
standard deviation of about 0.4 eV.

Unfortunately, the same approach cannot be applied to find δb, since experimental values of the second
triplet energy level are unavailable. The possible error margin here is relatively high because we use
empirical factors obtained for T1 to correct PM3 results for T2. To define constraints limiting the relevant
area of chemical space, we suggest to employ a more qualitative approach. Fig. S6 presents core fragments
of compounds with registered TTF activity (Wang et al., 2020), plotted in accordance with their energy
losses. For a selected few compounds, external quantum efficiency of the device was reported to exceed
statistical limit, thus indicating a favorable alignment of T1 and T2 energy levels. These compounds are
rubrene (Cheng et al., 2010) (RUB) and perylene (Hoseinkhani et al., 2015) (PER) showed with red markers
in Fig. S6. We also added tetracene (TET, square marker) to this group, since the required alignment of T1
and T2 in this case is suggested by independent experimental evidence (Völcker et al., 1989; Komfort et al.,
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Figure S4. Validation results for energy prediction models; linear fit is shown with dotted lines.

1990; Fallon et al., 2020). It can be seen that the assumption δb = δc = 0 fails completely, leaving aside
the majority of black points and all red ones. Introduction of a tighter criterion δc = −0.3 eV does not
change the situation, while allowing some room for statistical errors in calculations. The adequacy of the
TTF search relies solely on the δb. For δb = −0.8 eV almost all points are included in the target area, while
lower values ignore many compounds, introducing an obvious error in the important case of perylene.
2.2 Details of the screening

The first generation of the skeleton frames consisted of one 5- and one 6-membered rings. After
consecutively applying steps I–III of the structure generation algorithm three times in a row, we obtained all
possible frames with at most 4 rings. Step IV produced all possible core compounds within the constraints
listed in Section 2.2 of the main text. The corresponding region of the chemical space contains 472505
non-equivalent structures. The size of the subspace is sufficiently small to be treatable with SE methods
of quantum chemistry, but at the same time large enough to be subjected to the search of promising TTF
candidates and to be used for the development and validation of ML models. After that, we conducted
geometry optimization using PM3. On the optimized structures, three first singlet and triplet excitation
energies were calculated in Gaussian 16 at the configuration interactions singles (CIS) level using PM3
Hamiltonian. For 10035 structures (about 2% of the total amount) simulations failed, primarily due to the
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Figure S5. Comparison of experimental and calculated values of δc = 2T1 − S1. Red markers denote
compounds consisted of one ring. Dashed line corresponds to exact coincidence.

Figure S6. Calculated energy levels of existing TTF compounds. Cases with experimental evidences of
prohibited triplet decay channel are colored with red. Black dashed lines correspond to ideal TTF criteria:
δb = δc = 0. Red dotted lines correspond to the TTF criteria applied in actual calculations.

unconverged optimization procedure. After application of TTF criteria, the majority of core compounds
were fileterd out, leaving only 5690 candidates.

Table S2: Candidates for the TTF core compounds found in
PubChem database.

ID CID SMILES FIGURE E(S0),
eV

E(T1),
eV

E(T2),
eV

Group ancestor: anthracene

1 192719 c1cnc2cc3cccnc3cc
2c1

3.39 2.04 3.36
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2 12867025 c1ccc2cc3cnncc3cc
2c1

3.01 2.01 3.26

3 15115274 c1cnc2cc3cnccc3cc
2c1

3.38 2.01 3.25

4 19041920 c1ncc2cc3ncncc3cc
2n1

3.07 2.25 3.73

5 89231701 c1cnc2cc3ncncc3cc
2c1

3.11 2.15 3.52

6 69173896 c1cnc2cc3ccncc3cc
2c1

3.38 2.01 3.27

7 520238 c1ccc2cc3ncccc3cc
2c1

3.31 1.91 3.17

8 13064692 c1cc2cc3cnccc3cc2
cn1

3.35 1.97 3.18

9 22999777 c1cc2cc3ccncc3cc2
cn1

3.40 1.99 3.18

10 601692 c1ccc2cc3cnccc3cc
2c1

3.29 1.89 3.09

11 22745371 c1ccc2cc3ncncc3cc
2c1

3.13 2.01 3.33

12 12886698 c1ccc2cc3nccnc3cc
2c1

2.85 2.01 3.34

13 2750235 c1cnc2cc3ncccc3cc
2c1

3.40 2.04 3.34

14 19886268 c1cnc2cc3cncnc3cc
2c1

3.13 2.15 3.52
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15 8418 c1ccc2cc3ccccc3cc
2c1

3.23 1.81 3.01

16 21050939 c1cnc2cc3nccnc3cc
2c1

2.85 2.14 3.50

Group ancestor: tetracene

17 59467607 c1cnc2cc3cc4ncccc
4cc3cc2c1

2.70 1.42 2.58

18 13287587 c1ccc2cc3cc4cnccc
4cc3cc2c1

2.61 1.32 2.41

19 59467675 c1cnc2cc3nc4ccccc
4cc3cc2c1

2.68 1.45 2.48

20 59467659 c1nncc2cc3cc4cnnc
c4cc3cc12

2.84 1.58 2.76

21 71359095 c1ccc2cc3cc4ncncc
4cc3cc2c1

2.66 1.40 2.55

22 88456039 c1ccc2nc3cc4cnccc
4cc3cc2c1

2.68 1.44 2.45

23 59467711 c1ccc2cc3cc4nccnc
4cc3cc2c1

2.66 1.40 2.55

24 102403997 c1cnc2cc3nc4cccnc
4cc3nc2c1

2.74 1.69 2.73

25 88455570 c1ccc2nc3cc4ccncc
4cc3cc2c1

2.67 1.44 2.45

26 12313103 c1ccc2cc3cc4ncccc
4cc3cc2c1

2.62 1.33 2.44

27 59422764 c1cnc2cc3cc4nccnc
4cc3cc2n1

2.74 1.58 2.83

28 59467628 c1cnc2cc3cc4ccccc
4nc3cc2c1

2.69 1.45 2.48

29 12586670 c1ccc2cc3cc4cnncc
4cc3cc2c1

2.68 1.41 2.53
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30 59467676 c1cnc2cc3cc4cccnc
4cc3cc2c1

2.70 1.42 2.58

31 59467705 c1cc2cc3cc4ccncc4
cc3cc2cn1

2.69 1.39 2.49

32 59467631 c1cc2cc3cc4cnccc4
cc3cc2cn1

2.67 1.38 2.49

33 137459010 c1ccc2nc3cc4nccnc
4cc3cc2c1

2.72 1.53 2.58

34 12309611 c1ccc2nc3cc4ccccc
4nc3cc2c1

2.67 1.49 2.41

35 130290887 c1ccc2cc3nc4cccnc
4cc3cc2c1

2.66 1.45 2.54

Group ancestor: isobenzofurane

36 45080545 c1ncc2nocc2n1 2.86 2.12 3.60

37 54059110 c1cc2conc2cn1 3.33 1.89 3.49

38 12355694 c1cc2cocc2cn1 3.65 1.79 3.42

39 18465322 c1ncc2cocc2n1 3.15 2.00 3.82

40 56972324 c1cc2nocc2cn1 3.52 2.02 3.51

41 121361673 c1nncc2cocc12 3.01 2.02 3.70

42 18442745 c1cnc2cocc2c1 3.63 1.81 3.50

43 22574589 c1cnc2conc2c1 3.45 1.97 3.54
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44 15254832 c1cnc2nocc2c1 3.19 2.02 3.60

45 67498 c1ccc2nocc2c1 3.39 1.78 3.41

46 23146843 c1cnc2cocc2n1 2.87 1.98 3.51

Group ancestor: pyrene

47 10465507 c1cc2cncc3ccc4cnc
c1c4c23

3.30 2.02 3.36

48 9132 c1cc2ccc3cncc4ccc
(c1)c2c34

3.30 2.03 3.37

49 31423 c1cc2ccc3cccc4ccc
(c1)c2c34

3.27 2.04 3.38

Group ancestor: furane

50 118210311 c1noc2cnoc12 3.72 2.43 4.20

51 45122577 c1cc2cc3c[nH]cc3c
c2o1

3.30 1.78 2.85

52 45120275 c1nc2c(ccc3cocc32
)o1

3.29 1.70 3.08

53 53471472 c1cc2cn[nH]c2c2no
cc12

3.34 2.04 3.38

54 45120272 c1nc2ccc3cocc3c2o1 3.42 1.72 3.21
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55 136344757 c1cc2nocc2[nH]1 3.11 1.87 3.05

56 70281749 c1ccc2c(c1)[nH]c1
c3cocc3ccc21

3.08 1.71 2.85

57 141022627 c1ccc2c(c1)[nH]c1
cc3cocc3cc12

2.68 1.38 2.74

58 15866930 c1ccc2c(c1)cn1c3c
cccc3oc21

3.19 1.80 2.92

59 57357167 c1cc2oncc2c2cocc12 3.23 1.73 3.05

60 45120274 c1nc2cc3cocc3cc2o1 3.18 1.45 2.98

61 13287595 c1ccc2cc3cc4occc4
cc3cc2c1

2.92 1.60 2.57

62 55288078 c1cc2cocc2[nH]1 3.67 1.83 3.05

63 22599150 c1ccc2cc3cc4ocnc4
cc3cc2c1

2.98 1.67 2.77

64 20093437 c1nc2cocc2[nH]1 3.93 2.08 3.44

65 136192814 c1cc2conc2[nH]1 3.31 2.00 3.23

66 129857652 c1cnc2ccc3nc4cocc
4cc3c2c1

2.77 1.34 2.61

67 45087483 c1cc2coc3ccc1n23 2.74 1.82 2.92
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68 129740670 c1ccc2c(c1)ccc1nc
3cocc3cc12

2.79 1.34 2.57

69 15350289 c1cc2c3cocc3ccc2c
2cocc12

2.83 1.42 2.08

70 45120728 c1nc2c(cnc3cocc32
)[nH]1

3.55 2.08 3.38

71 57357844 c1occ2cc3oncc3cc12 3.11 1.44 2.99

72 14322637 c1cc2ccc3coc4ccc(
c1)c2c34

3.16 1.69 3.05

73 45078668 c1nc2c(ccc3cocc32
)[nH]1

3.42 1.89 3.21

74 3540653 c1nc2c(ccc3nocc32
)o1

3.19 1.81 3.19

75 57352075 c1cc2c(ccc3conc32
)o1

3.14 1.81 2.96

76 132204277 c1cc2ccc3cocc3c2c
2cocc12

2.94 1.43 2.08

77 22599148 c1ccc2cc3c(ccc4nc
oc43)cc2c1

3.10 1.85 2.95

Group ancestor: others
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78 21887470 c1ccc2c(c1)nc1cnc
3coccc3c12

2.73 1.38 2.24

79 57116324 c1ccc2c(c1)[nH]c1
cc3c[nH]cc3cc12

2.89 1.78 2.85

80 129732091 C1=C2ONC=C2Oc
2ccccc21

2.87 1.63 2.62

81 13287594 c1ccc2cc3c[nH]cc3
cc2c1

2.75 1.31 2.63

82 45121711 c1ccc2nc3c[nH]cc3
nc2c1

2.70 1.53 2.71

83 12366601 c1ccc2cn3ncnc3cc2c1 2.78 1.71 3.29

84 13764187 c1cc2c[nH]cc2cn1 3.90 2.23 3.67

85 129652737 C1=COC2=CNOC2
=C1

2.70 1.45 2.39

86 54455968 c1ccc2nc3ncnn3cc2c1 2.67 1.84 3.34

87 66579102 C1=C2NNC=C2Oc
2ccccc21

2.95 1.60 2.62

88 129826334 C1=CC2=CNNC2=
CO1

3.08 1.55 2.31

89 139524815 C1=Cc2c([nH]c3ccc
cc23)NN1

2.69 1.81 2.98

90 3013853 c1ccc2c[nH]cc2c1 3.81 2.08 3.57
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91 90729303 c1cc2c[nH]c3ccc4[
nH]cc1c4c23

3.19 1.81 3.09

92 53639421 c1ccc2c(c1)cn1c3c
cccc3[nH]c21

2.97 1.81 2.87

93 129883915 C1=C2Oc3ccccc
3C=C2Oc2cncnc21

2.74 1.50 2.43

94 129790303 C1=COC2=CC=NO
C2=C1

2.74 1.30 2.17

95 54151620 c1ccc2c(c1)cn1c3n
cncc3[nH]c21

2.67 1.66 2.87

96 426233 C1=CNNC=C1 2.62 1.77 3.65

97 129737116 c1ccc2c(c1)cn1[nH
]ccc21

2.89 1.67 2.86

98 70213721 C1=COC2=Cc3cc
ccc3OC2=C1

2.83 1.32 2.17

99 136347748 c1cc2c3c([nH]cc3c
1)N=N2

2.69 1.89 3.07

100 88625285 c1ccc2c(c1)ccc1cc
3c[nH]cc3cc12

2.91 1.60 2.69

101 70043787 C1=NOC2=Cc3cc
ccc3OC2=C1

2.97 1.46 2.44
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102 129782488 c1ccc2c(c1)cc1ccc
c3ncoc2c13

2.81 1.57 2.58

103 69101505 C1=COC2=CNNC2
=C1

2.82 1.42 2.39

104 13764185 c1cnc2c[nH]cc2c1 3.85 2.25 3.77

105 17860321 C1=CNNC=N1 2.60 1.98 4.00

106 70552035 c1ccc2c(c1)cn1[nH
]cnc21

2.73 1.64 3.08

107 22714981 c1ccc2nc3c[nH]cc3
cc2c1

2.75 1.43 2.68
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