
Supplementary Material

Forward signal simulation in impermeable spheres with gamma distributed radii
The ability of the two-parameter model Eq. (18) — repeated below as Eq. (S1) — to adequately describe

diffusion in heterogeneous systems in which there exists a distribution of restriction length scales is
explored here by forward simulating the signal in impermeable spheres with a known gamma distribution
of radii, P (R), and subsequently fitting the simulated ∆I to obtain fm and ⟨c⟩.
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From Neuman (1974), the normalized spin echo attenuation due to diffusion within an impermeable
sphere of radius R under a static field gradient with amplitude g and echo time 2τ is given by
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where γ is the gyromagnetic ratio, D0 is the free diffusivity, αm is the mth root of

αmRJ ′
3/2(αmR)− 1

2J3/2(αmR) = 0, (S3)

where J3/2 is a Bessel function of the first kind and for which the first five roots are αmR =
[2.0815, 5.940, 9.206, 12.405, 15.579]. To simulate data, 2000 radii were selected from a gamma
distribution, γ(α, β), with parameters α and β using the gamrnd function in MATLAB. Radii (in µm)
were then normalized by a factor of β/(3α) and constrained to between 0.1 and 3.5. More explicitly,
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Larger values of R are ignored because R = 3.5 µm is sufficient to fully attenuate the signal at the τ and
b-values used. Values of ∆I were then simulated by choosing τ1 and τ2 to satisfy the bd = bs and bd = 0
conditions discussed in the main text, simulating I/I0 with the first five roots, and averaging over all spheres.
Experimental parameters were kept consistent with the main text: D0 = 2.15 µm2/ms, g = 15.3 T/m. No
noise was added as the purpose of this supplement is merely to demonstrate correspondence between P (R)
and fit parameters fm and ⟨c⟩. Results for several α and β are shown in Fig. S1. The PDF of radii P (R),
the simulated double and single spin echo signals, and the fitted ∆I are plotted. The truncated region of fit
was chosen to be bs = [2, 5] ms/µm2, as described in the Results section of the main text.

In all cases, the simulated ∆I is adequately fit by Eq. (S1) in the truncated region. Note, however, that the
same systematic overestimation at low and high bs seen in the experimental data (Fig. 6A) is observed here.
Changes in fm and ⟨c⟩ correspond to the changes in P (R). As the P (R) distribution shifts to the right in
Figs. S1A–C (same α, increasing β), fm decreases whilst ⟨c⟩ increases, indicating a smaller fraction of
restricted water and a distribution of radii that is further to the right (closer to ℓg), as expected. In Fig. S1D,
P (R) is shifted left, decreasing ⟨c⟩ compared to Fig. S1A because the central peak of P (R) now lies to
the left of ℓg. Thus, fitting to Eq. (S1) yields apparent parameters that meaningfully reflect coarse changes
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in P (R) (sans exchange), at least in cases where the analytical signal models in Neuman (1974) may be
applied, i.e., when the Gaussian phase approximation is valid — see Axelrod and Sen (2001).

While the simulation results indicate that estimated parameters from a simplified two-parameter model
trend correctly with P (R), the fit quality is noticeably better as P (R) decreases below lg. Further, we see
that the simulation Fig. S1D is the closest to the experimental results, providing an initial indication that
the majority of restricted water is restricted on length scales less than 800 nm in the neonatal mouse spinal
cord.

D

Figure S1. Simulated data and fits from impermeable spheres with gamma distributed radii. (A) Histogram
of simulated P (R) with α = 3 and β = 1.5. The dephasing length ℓg = 0.8 µm is overlaid. Signal was
averaged over 2000 spheres to obtain I/I0 in the single (bd = bs) and double spin echo (bd = 0) cases,
shown to the right. The simulated difference ∆I is then compared to the truncated fit with truncation range
bs = [2, 5] ms/µm2. In all cases, fits were performed using lsqnonlin and an initial guess of fm = 0.6

and ⟨c⟩ = 1 × 10−5 (µm2/ms)1/3 was provided. The truncated region is plotted to the right along with
fitted fm and ⟨c⟩ values. Data was simulated in increments of τ = 1.5× 10−2 ms. The fit yields estimates
fm = 0.65 and ⟨c⟩ = 0.13 (µm2/ms)1/3. (B) Simulation with α = 3, β = 2 yields fm = 0.39, ⟨c⟩ = 0.42.
(C) Simulation with α = 3, β = 2.2 yields fm = 0.27, ⟨c⟩ = 0.62. (D) Simulation with α = 2, β = 1.25
yields fm = 0.64, ⟨c⟩ = 0.07. Note that this final case closely resembles the experimental data presented
in Fig. 6A
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Analysis of different truncation points
In the main text, a theoretical justification for the chosen truncation range of bs = [2, 5] ms/µm2 or

1.23 ℓg ≤ ℓd ≤ 1.6 ℓg was given. Of course, a smaller range will yield better fits in general. As such, it
is appropriate to empirically explore the effect of different truncation points and thereby provide further
justification of the proposed truncation procedure. In Fig. S2, every available point in Fig. 6A is utilized as
an alternative truncation point. In each case, bs = 2 ms/µm2 remains the minimum point. The obtained
fit parameters and residual sum of squares (RSS) over the truncation region are plotted in Fig. S2B. As
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Figure S2. Analysis of alternative bs truncation points. (A) Data from Fig. 6A with fits using bs =
2ms/µm2 as the minimum and different bs values as the maximum of the truncation range. (B) Obtained fit
parameters and RSS over the truncation region for different maximum bs. Note that fit parameters and RSS
values converge as bs nears 5 ms/µm2. The convergent fm values agree with the experimentally observed
steady-state exchange fraction fSS , i.e., at long mixing time.

expected, the RSS decreases as the range decreases. It is also clear, however, that the obtained fit parameters
fm and ⟨c⟩ stabilize as the truncation point nears bs = 5 ms/µm2. Furthermore, the calculated steady-state
exchanging fraction, fSS = 2fm(1− fm), converges on the experimentally observed value of 0.48 shown
in Fig. 6C (with the exception of a single outlier). Similar convergence is also observed for the fitting of k
using different bs as the fixed value (data not shown). Thus, there is good empirical justification for the
choice to truncate at or near bs = 5 ms/µm2, in addition to the presented theoretical arguments.
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