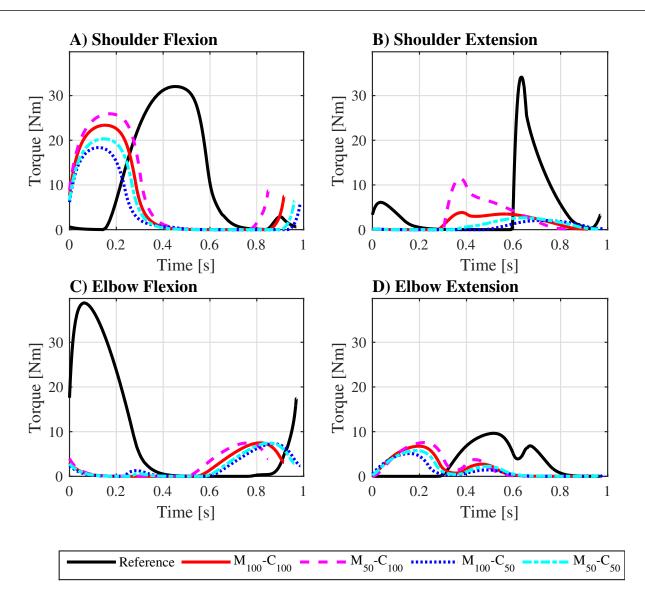
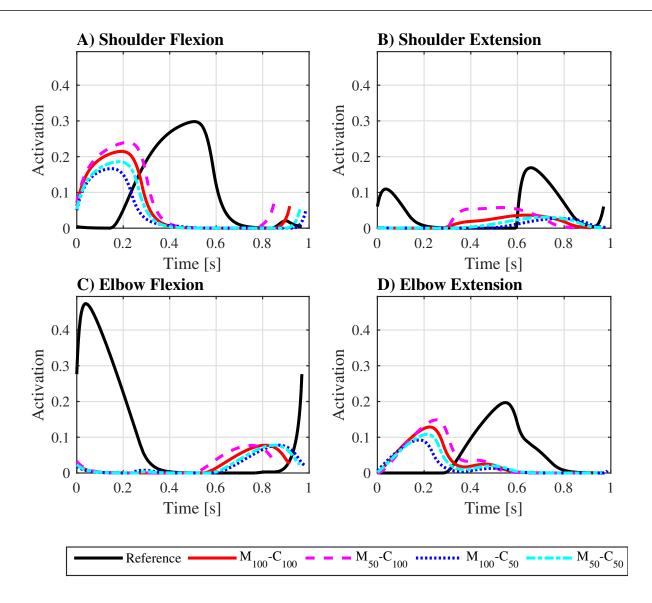
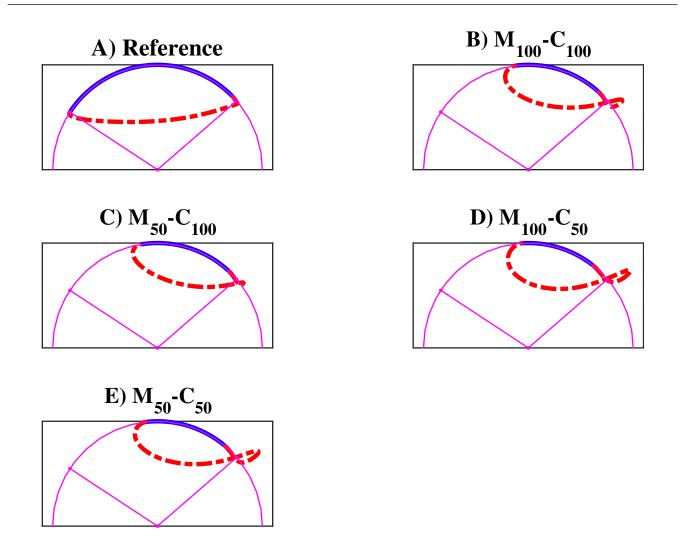
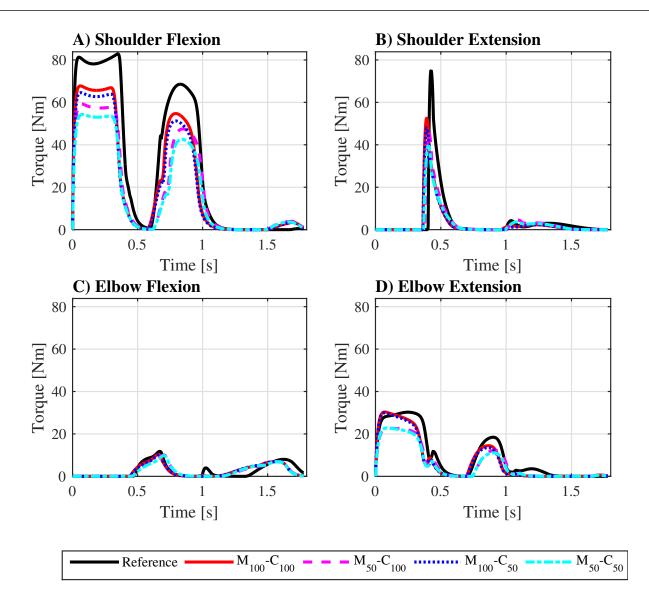


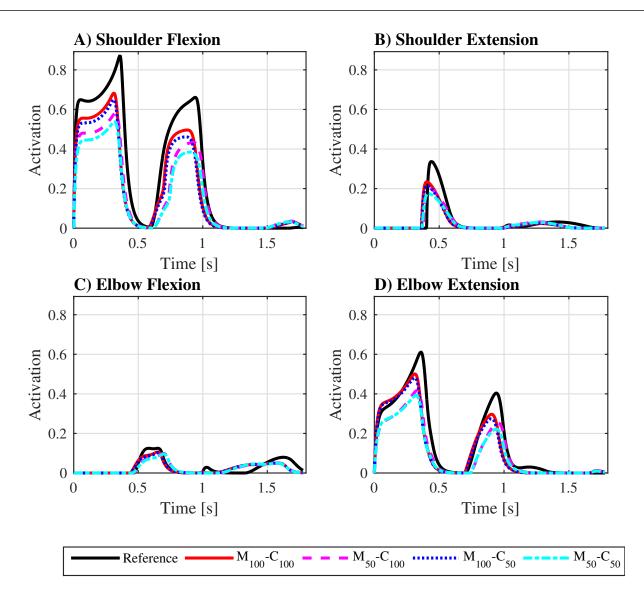
Supplementary Material


1 FIGURES


Figure S1. Predicted hand patterns for the reference unassisted condition (Reference) (**A**), for the assisted locomotion with 100% of reference model parameters M_i and C_i ($M_{100} - C_{100}$) (**B**), reduction of 50% in M_i ($M_{50} - C_{100}$) (**C**), reduction of 50% in C_i ($M_{100} - C_{50}$) (**D**), and reduction of 50% in M_i and C_i ($M_{50} - C_{50}$) (**E**) along a complete cycle for *steady state* locomotion on a level surface at an average speed of 0.9 m/s.


Figure S2. Predicted hand patterns for the reference unassisted condition (Reference) (**A**), for the assisted locomotion with 100% of reference model parameters M_i and $C_i (M_{100} - C_{100})$ (**B**), reduction of 50% in $M_i (M_{50} - C_{100})$ (**C**), reduction of 50% in $C_i (M_{100} - C_{50})$ (**D**), and reduction of 50% in M_i and $C_i (M_{50} - C_{50})$ (**E**) along the sequence of phases propulsion-recovery-propulsion-recovery-propulsion in the *startup* locomotion on a level surface at an average speed of 0.9 m/s.


Figure S3. Predicted bilateral shoulder flexion (**A**), shoulder extension (**B**), elbow flexion (**C**) and elbow extension (**D**) torque profiles along a complete cycle for *steady state* locomotion on a 3° ramp at an average speed of 0.9 m/s for the reference unassisted condition (Reference), and for the assisted locomotion with 100% of reference model parameters M_i and C_i ($M_{100} - C_{100}$), reduction of 50% in M_i ($M_{50} - C_{100}$), reduction of 50% in C_i ($M_{100} - C_{50}$), and reduction of 50% in M_i and C_i ($M_{50} - C_{50}$).


Figure S4. Predicted bilateral shoulder flexion (**A**), shoulder extension (**B**), elbow flexion (**C**) and elbow extension (**D**) activation profiles along a complete cycle for *steady state* locomotion on a 3° ramp at an average speed of 0.9 m/s for the reference unassisted condition (Reference), and for the assisted locomotion with 100% of reference model parameters M_i and C_i ($M_{100} - C_{100}$), reduction of 50% in M_i ($M_{50} - C_{100}$), reduction of 50% in C_i ($M_{100} - C_{50}$), and reduction of 50% in M_i and C_i ($M_{50} - C_{50}$).

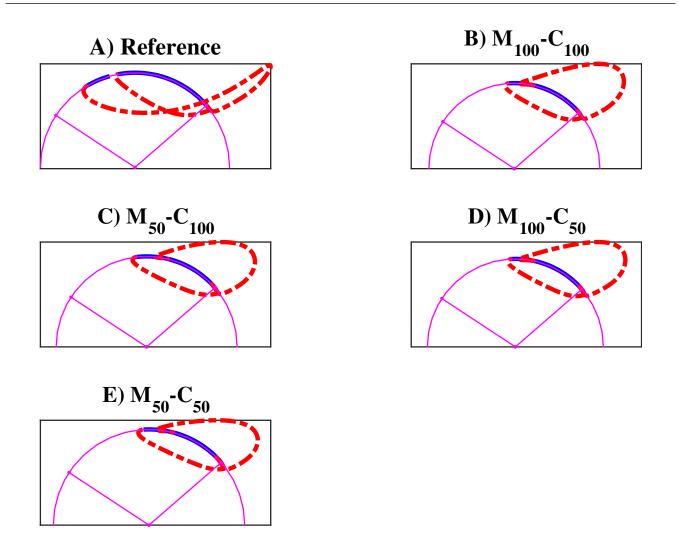

Figure S5. Predicted hand patterns for the reference unassisted condition (Reference) (**A**), for the assisted locomotion with 100% of reference model parameters M_i and C_i ($M_{100} - C_{100}$) (**B**), reduction of 50% in M_i ($M_{50} - C_{100}$) (**C**), reduction of 50% in C_i ($M_{100} - C_{50}$) (**D**), and reduction of 50% in M_i and C_i ($M_{50} - C_{50}$) (**E**) along a complete cycle for *steady state* locomotion on a 3° ramp at an average speed of 0.9 m/s.

Figure S6. Predicted bilateral shoulder flexion (**A**), shoulder extension (**B**), elbow flexion (**C**) and elbow extension (**D**) torque profiles along the sequence of phases propulsion-recovery-propulsion-recovery-propulsion in the *startup* locomotion on a 3° ramp at an average speed of 0.9 m/s for the reference unassisted condition (Reference), and for the assisted locomotion with 100% of reference model parameters M_i and C_i ($M_{100} - C_{100}$), reduction of 50% in M_i ($M_{50} - C_{100}$), reduction of 50% in C_i ($M_{100} - C_{50}$), and reduction of 50% in M_i and C_i ($M_{50} - C_{50}$).

Figure S7. Predicted shoulder flexion (**A**), shoulder extension (**B**), elbow flexion (**C**) and elbow extension (**D**) activation profiles along the sequence of phases propulsion-recovery-propulsion-recovery-propulsion in the *startup* locomotion on a 3° ramp at an average speed of 0.9 m/s for the reference unassisted condition (Reference), and for the assisted locomotion with 100% of reference model parameters M_i and C_i ($M_{100} - C_{100}$), reduction of 50% in M_i ($M_{50} - C_{100}$), reduction of 50% in C_i ($M_{100} - C_{50}$), and reduction of 50% in M_i and C_i ($M_{50} - C_{50}$).

Figure S8. Predicted hand patterns for the reference unassisted condition (Reference) (A), for the assisted locomotion with 100% of reference model parameters M_i and $C_i (M_{100} - C_{100})$ (B), reduction of 50% in $M_i (M_{50} - C_{100})$ (C) and reduction of 50% in $C_i (M_{100} - C_{50})$ (D), and reduction of 50% in M_i and $C_i (M_{50} - C_{50})$ (E) along the sequence of phases propulsion-recovery-propulsion-recovery-propulsion in the *startup* locomotion on a 3° ramp at an average speed of 0.9 m/s.

2 **REPOSITORIES**

The function relating joint torques with muscle activations, containing force-length, force-velocity relationships and passive joint torques based on Brown (2018), is made available in https://github.com/Vinicius-Ishimoto/Framework-for-Wheelchair-OC-Simulations/blob/main/Main%20Functions/muscle_torque_generators.m.

The results of this study are made available in https://github.com/Vinicius-Ishimoto/ Framework-for-Wheelchair-OC-Simulations/tree/main/Results, which is a MATLAB structure with all the data related to the person, wheelchair and the predicted states and controls for all the simulations. Please, follow the README instruction to access the data.