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A PERIODIC SOLUTIONS IN THE HORSE MODEL
Figure S1 shows the time profiles of typical periodic solutions obtained by changing εµ and εk from the
symmetric horse model (εµ = εk = 0, µ0 = 0.72, k0 = 2.2, κ = 0.21, and z∗ = 0.06). When εµ = εk = 0,
Sequence 1 appeared (Figure S1A). When increasing εµ with εk = 0, Sequence 9 appeared (Figure
S1B). By contrast, when increasing εk with εµ = 0, Sequence 5 appeared (Figure S1C). Furthermore,
when εµ = aεk (a = 0.69), Sequence 1 appeared in the same manner as the symmetric model (Figure
S1D). Sequence 5 appeared for εµ < aεk and Sequence 9 appeared for εµ > aεk (Figure S1E). These
characteristics were consistent with those in the dog model (Figure 3).

B GAIT DEPENDENCE IN THE HORSE MODEL
Figures S2A–C show the gait dependence of the periodic solution that results from independently changing
µ0, k0, and κ by ±50% from the horse parameter set (µ0 = 0.72, k0 = 2.2, and κ = 0.21), where
Sequences 1, 5, and 9 appeared for εµ = aεk, εµ < aεk, and εµ > aεk, respectively. Although the
coefficient a changed slightly when µ0 and k0 increased (Figures S2A, B, D, and E), it largely decreased as
κ increased (Figures S2C and F). These characteristics were consistent with those in the dog model (Figure
4).

C DERIVATION OF SEQUENCE 1 CONDITION USING PERTURBATION THEORY
We derived the condition of εµ and εk (εµ = aεk) to achieve Sequence 1 approximately using perturbation
theory based on the approximate solution of the symmetric model (εµ = εk = 0) analytically derived in
(Adachi et al. (2020)). We used εµ = aε and εk = ε (ε, a ≥ 0) for ε � 1 and assumed the following
periodic solution for Sequence 1:

z(τ) = z0(τ) + εz1(τ) +O(ε2) (S1a)

θ(τ) = θ0(τ) + εθ1(τ) +O(ε2) (S1b)

φ(τ) = φ0(τ) + εφ1(τ) +O(ε2), 0 ≤ τ ≤ T, (S1c)

where z0(τ), θ0(τ), and φ0(τ) correspond to the periodic solution of the symmetric model (i.e., ε = 0) and
T is the time duration from one apex to the next apex. We assumed T = τ f10 + τds0 + τ f20 +O(ε2) based on
the simulation results, where τ f10 , τds0 , and τ f20 correspond to the time durations of the first flight, double
stance, and next flight phases, respectively. We also assumed that the periodic solution satisfied the same
condition z(τ f10 ) = z(τ f10 + τds0 ) as that assumed in the symmetric model in our previous work (Adachi
et al. (2020)).
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By linearizing the governing equations under the assumptions |θ| � 1 and |φ| � 1, we reduced the
equations of motion (3) to

z̈0 +
∑

i∈I, j∈J
f0ij + 1 + ε

z̈1 + ∑
i∈I, j∈J

f1ij + (1/a)k0
∑
j∈J

(f0Fj − f0Hj)

+O(ε2) = 0 (S2a)

2µ0θ̈0 +
∑
j∈J

dj(f
0
Fj + f0Hj) + ε

[
2µ0θ̈1 +

∑
j∈J

dj(f
1
Fj + f1Hj)

+2µ0φ̈0 + (1/a)k0
∑
j∈J

dj(f
0
Fj − f0Hj)

]
+O(ε2) = 0 (S2b)

2µ0φ̈0 +
∑
j∈J

dj(f
0
Fj − f0Hj) + 4κk0φ0

+ε

[
2µ0φ̈1 +

∑
j∈J

dj(f
1
Fj − f1Hj) + 4κk0φ1

+2µ0θ̈0 + (1/a)k0
∑
j∈J

dj(f
0
Fj + f0Hj)

]
+O(ε2) = 0 (S2c)

and reduced the conditions (5) and (6) for the phase transition and periodicity to

ż0(0) + εż1(0) +O(ε2) = 0 (S3a)

z0(τ
f1
0 ) + φ0(τ

f1
0 ) + ε

[
z1(τ

f1
0 ) + φ1(τ

f1
0 )
]
+O(ε2) = 0 (S3b)

θ0(τ
f1
0 ) + ε

[
θ1(τ

f1
0 )
]
+O(ε2) = 0 (S3c)

z0(τ
f1
0 + τds0 ) + φ0(τ

f1
0 + τds0 ) + ε

[
z1(τ

f1
0 + τds0 ) + φ1(τ

f1
0 + τds0 )

]
+O(ε2) = 0 (S3d)

θ0(τ
f1
0 + τds0 ) + ε

[
θ1(τ

f1
0 + τds0 )

]
+O(ε2) = 0 (S3e)

ż0(τ
f1
0 + τds0 + τ f20 ) + ε

[
ż1(τ

f1
0 + τds0 + τ f20 )

]
+O(ε2) = 0 (S3f)

q0(0)−BLR q0(τ
f1
0 + τds0 + τ f20 ) + ε

[
q1(0)−BLR q1(τ

f1
0 + τds0 + τ f20 )

]
+O(ε2) = 0, (S3g)

where

fkij =

{
k0 (zk + dj(θk + hjφk)) stance phase
0 swing phase

i = F,H, j = L,R, k = 0, 1

qi = [zi θi φi żi θ̇i φ̇i]
T(i = 0, 1), hF = 1, and hH = −1.
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We obtained z0(τ), θ0(τ), and φ0(τ) as follows:

z0(τ) =


zf10 (τ ; p), 0 ≤ τ < τ f10
zds0 (τ ; p), τ f10 ≤ τ < τ f10 + τds0
zf20 (τ ; p), τ f10 + τds0 ≤ τ < τ f10 + τds0 + τ f20

(S4)

θ0(τ) = 0 0 ≤ τ < τ f10 + τds0 + τ f20 (S5)

φ0(τ) =


φf10 (τ ; p), 0 ≤ τ < τ f10
φds0 (τ ; p), τ f10 ≤ τ < τ f10 + τds0
φf20 (τ ; p), τ f10 + τds0 ≤ τ < τ f10 + τds0 + τ f20 ,

(S6)

where

p = [z0(0), φ0(0), φ̇0(0)/ωf , ν1, ν2, ωf ]
T

ν1,2 =
k0
2µ0

[
1 + 2µ0 + 2κ∓

√
(1 + 2µ0 + 2κ)2 − 16µ0κ

]
ωf =

√
2κk0/µ0

zf10 (τ ; p), z
ds
0 (τ ; p), zf20 (τ ; p), φ

f1
0 (τ ; p), φ

ds
0 (τ ; p), and φf20 (τ ; p) correspond to the periodic solution of the

symmetric model (ε = 0) obtained in (Adachi et al. (2020)).

We obtained z1(τ), θ1(τ), and φ1(τ) as follows:

z1(τ) = 0 0 ≤ τ < τ f10 + τds0 + τ f20 (S7)

θ1(τ) =



−Af sin(ωfτ) +
Af sin(ωfτ

f1
0 )

τ f10
τ, 0 ≤ τ < τ f10

Aθ sin(ωθ(τ − τ f10 )) +
∑
i=1,2

Ni
ω2
i − ω2

θ

sin(ωi(τ − τ f10 ) + ψi)−
C

ω2
θ

,

τ f10 ≤ τ < τ f10 + τds0

−Af sin(ωf(τ − (τ f10 + τds0 + τ f20 ))) +
Af sin(ωfτ

f2
0 )

τ f20
(τ − (τ f10 + τds0 + τ f20 )),

τ f10 + τds0 ≤ τ < τ f10 + τds0 + τ f20

(S8)

φ1(τ) = 0 0 ≤ τ < τ f10 + τds0 + τ f20 , (S9)
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where

Af = φ̇0(0)/ωf

ωθ =
√
k0/µ0

Ni = Gi(((1/a)− 1− 2κ)νi + 4κk0)/(4µ0) i = 1, 2

Gi =
√
A2
i +B2

i i = 1, 2

Ai = ζi + ρi i = 1, 2

Bi = ηi/ωi i = 1, 2

ρ1,2 = ±2(ν2,1 − 2k0)/(ν1,2(ν2 − ν1))
ζ1,2 =

2
ν2−ν1

[
±(ν2,1 − 2k0)z0(τ

f1
0 )∓ 2k0φ0(τ

f1
0 )
]

η1,2 =
2

ωi(ν2−ν1)

[
±(ν2,1 − 2k0)ż0(τ

f1
0 )∓ 2k0φ̇0(τ

f1
0 )
]

ωi =
√
νi i = 1, 2

sinψi = Ai/
√
A2
i +B2

i i = 1, 2

cosψi = Bi/
√
A2
i +B2

i i = 1, 2

C = (1/4µ0) [2κ ((ν1 − 2k0)ρ1 + (ν2 − 2k0)ρ2)− ((1/a)− 1)(ν1ρ1 + ν2ρ2)] .

We obtained Aθ and a by solving the following equations:∑
i=1,2

Ni
ω2
i − ω2

θ

sinψi =
C

ω2
θ

− Aθ sinψθ (S10a)

∑
i=1,2

ωiNi
ω2
i − ω2

θ

cosψi = −ωfAf cos(ωfτ
f) +

Af sin(ωf1τ
f1
0 )

τ f10
− ωθAθ cosψθ, (S10b)

where ψθ = (π−ωθτds0 )/2. As a result, we obtained a ∈ R+ uniquely and obtained the condition εµ = aεk
for Sequence 1.

We compared the results of a obtained by the approximate analysis above and numerical simulation
using the dog and horse models (Figure S3A). As shown in the figure, the approximate analysis almost
reproduced the simulation results in both models. We also compared the dependence of a on the parameters
µ0, k0, and κ between the approximate analysis and numerical simulation in the dog and horse models
(Figures S3B and C, respectively). The approximate analysis reproduced similar tendencies to those of the
numerical simulation for µ0 and κ. However, they had some differences, mainly because of linearization
errors.
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Figure S1. Gait dependence on εk and εµ in the horse model. Time profile of the periodic solution (A)
for the symmetrical model (εk = εµ = 0) and those for two values of (B) εµ with εk = 0, (C) εk with
εµ = 0, and (D) εk with εµ = aεk. Cyan, green, pink, and yellow regions indicate flight (F), fore stance
(FS), hind stance (HS), and double stance (DS), respectively. Dotted lines indicate the periodic solution of
the symmetrical model. (E) Gait dependence on εk and εµ.
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Figure S2. Gait dependence on physical parameters in the horse model. Condition of εk and εµ (εµ = aεk)
to achieve Sequence 1 for three values of (A) µ0, (B) k0, and (C) κ, while holding the other parameters
constant at µ0 = 0.72, k0 = 2.2, and κ = 0.21. Sequences 5 and 9 appeared when εµ < aεk and εµ > aεk,
respectively. Dependence of a on (D) µ0, (E) k0, and (F) κ.

6



Supplementary Material

Figure S3. Comparison of a obtained using approximate analysis and numerical simulation. (A) Condition
of εµ and εk (εµ = aεk) to achieve Sequence 1 using dog and horse models. (B) Dependence of a on µ0,
k0, and κ in the dog model. (C) Dependence of a on µ0, k0, and κ in the horse model.
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