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A PERIODIC SOLUTIONS IN THE HORSE MODEL

Figure @ shows the time profiles of typical periodic solutions obtained by changing ¢, and ¢j, from the
symmetric horse model (¢, = ¢, = 0, po = 0.72, kg = 2.2, k = 0.21, and z* = 0.06). When ¢, = ¢, = 0,
Sequence 1 appeared (Figure @A). When increasing ¢, with €, = 0, Sequence 9 appeared (Figure
|§_T]B). By contrast, when increasing ¢, with £, = 0, Sequence 5 appeared (Figure [S_Tp). Furthermore,
when €, = acy (a = 0.69), Sequence 1 appeared in the same manner as the symmetric model (Figure
[S_T[D). Sequence 5 appeared for €, < aey and Sequence 9 appeared for ¢, > agy, (Figure [S_T[E). These
characteristics were consistent with those in the dog model (Figure 3).

B GAIT DEPENDENCE IN THE HORSE MODEL

Figures[S2JA-C show the gait dependence of the periodic solution that results from independently changing
Lo, ko, and x by £50% from the horse parameter set (g = 0.72, kg = 2.2, and x = 0.21), where
Sequences 1, 5, and 9 appeared for ¢, = acy, €, < agy, and €, > agy, respectively. Although the
coefficient a changed slightly when i and ko increased (Figures[S2JA, B, D, and E), it largely decreased as
« increased (Figures[S2|C and F). These characteristics were consistent with those in the dog model (Figure
4).

C DERIVATION OF SEQUENCE 1 CONDITION USING PERTURBATION THEORY

We derived the condition of €, and ¢f, (¢, = agy) to achieve Sequence 1 approximately using perturbation
theory based on the approximate solution of the symmetric model (¢, = ¢, = 0) analytically derived in
(Adachi et al. (2020)). We used ¢, = ac and ¢, = € (¢,a > 0) for ¢ < 1 and assumed the following
periodic solution for Sequence 1:

2(7) = 20(7) +e21(7) + O(£?) (Sla)
0(7) = Oo(1) +01(7) + O(£?) (S1b)
O(1) = do(1) + b1 (1) + O(e?), 0<7<T, (Slc)

where 2o (7), 0p(7), and ¢ (7) correspond to the periodic solution of the symmetric model (i.e., ¢ = 0) and
T is the time duration from one apex to the next apex. We assumed 7" = 7’51 + T(()is + 7'52 + O(£?) based on
the simulation results, where 7.1, 7515, and 752 correspond to the time durations of the first flight, double
stance, and next flight phases, respectively. We also assumed that the periodic solution satisfied the same
condition 2(7'51) = z(Tél + Tgs) as that assumed in the symmetric model in our previous work (Adachi
et al. (2020)).
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By linearizing the governing equations under the assumptions |#| < 1 and |¢| < 1, we reduced the

equations of motion (3) to

Bt > S l4e A+ Y+ a)ked (f — fy)| +0@E) =

i€l jed €L, jeg jeTJ

2#050 + Zdj(fgj + fI%J) +e€ 2NOél + Zdj(fl*lj + fl}lg)
jeTJ JjeJ

+2u0¢0 + (1/a)kozdj(fFoj - fglj) +0(e%) =

jeJ

2000 + Y _d;i(fpj — fit;) + Arkodo
JjeJ

+e [2p001 + Zdj(fplj — fitj) + Arkod
JjeJ

+24060 + (1/a)k02dj(f19j + fIE)Ij) +0(e%) =

JjeT

and reduced the conditions (5) and (6) for the phase transition and periodicity to

20(0) +21(0) + O(g?) =
20(79") + o (7 )+€[Z1(To)+¢1( D +0(?) =
Oo(ih) + e [01(78H)] + O(?) =0
20(mg" +76%) + do(7g' +76%) + & [21(75" + 76%) + 61.(75" + 76°)] + O(e?) =
B0 (7 +Tgs)~|—6[91( +T§S)}+O() 0
0( +TdS+Tf2)+€[21( +Tgs+7f2)}+0() 0
40(0) — Brr qo(7" + 765 + 78) + € [q1(0) — Bir 1 (78 + 768 + 78)] + 0(?) = 0,

-

where

1t = ko (zi + dj (0 + hjodr)) sta'nce phase i —F.H.j=LR k=01
J 0 swing phase

i = (2 0; ¢i % 0; 6T (i = 0,1), hp = 1, and hyy = —1.

(S2a)

(S2b)

(S2c¢)

(S3a)
(S3b)
(S3¢)
(S3d)
(S3e)
(S3f)
(S3g)
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We obtained zo(7), 0p(7), and ¢o(7) as follows:

where

_ d . f1 f1 d
20(7) = Z?S(T,p), 7'% < Td< To + Tofs | N
202(7';])), T01+TOS§T<T01+TOS+TO

Oo(t) =0 0<7<7t+78s+ 7l
o4 (rip), 0<T <7
do(r) =4 00°(msp). T < <l 4

¢52(T;p), T(gl + 7'515 <7< 7'51 + Tg‘s + 752,

p= [2’0(0),¢0<0),d)o(O)/(,df,l/l,I/Q,wf}T
V2 = 2% [1 + 200 + 26 F /(1 + 200 + 2)2 — 16%;@]

wr = +/2kko /1o

(§4)

(85)

(56)

Z(f)l(T; P), zSS(T; P), 262(7'; D), gb(f)l (T;p)s gbgs(r; p), and gbgz (7;p) correspond to the periodic solution of the

symmetric model (¢ = 0) obtained in (Adachi et al.| (2020)).

We obtained z1(7), 01(7), and ¢1(7) as follows:

2(r)=0 0<7 <7t 478+ 7f2 (S7)
( Aesi f1
70
: f1 Ni : f1
Agsin(wy(T — 7)) + Z D) 5 sin(wi(T —79) + i) —
i—12% T Y
01(7) = << gl 4 ds (S8)
. Ay sin(wyr?
—Apsin(wp(r — (rfl + 785 + 72))) + %v — (15" +78° +77),
0
L 7'514—7'615 §T<T51+T€S+T§2
$1(1) =0 0<7 <7l + 78+ 782, (S9)
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where

Ap = ¢o(0) /wi
wp = /ko/ 1o

Ni=Gi((1/a) = 1 = 2k)v; + 4rko) /(4p10) i =1,2
Gi=/A?+B? i=1,2
Ai=G+p =12
Bi=niJw; i=12
p12 = £2(v21 — 2ko)/(v1,2(v2 — 1))
Gz = 72 [E(va — 2ko)z0(78h) F 2koso(73h)]
ma = ﬁ [i(VQ,l — 2kg)20(d!) F Qkoéﬂ(ﬂ?)}
wi= T i=1,2
siny; = A;/ AZ2 —i—BZZ i=1,2

cos; = B;/ A% +Bi2 1=1,2
C' = (1/4p0) 26 ((v1 = 2ko)p1 + (v2 — 2ko)p2) — ((1/a) — 1)(vip1 + v2p2)].

We obtained Ay and a by solving the following equations:

N; C
i—12% ~ % o

N Ag si H
> T costy = —wpAg cos(wrr!) + m — wyAg cos 1y, (S10b)
i—12% Yo 0

where 1y = (T —wp7{*)/2. As aresult, we obtained a € RT uniquely and obtained the condition €, = agy,
for Sequence 1.

We compared the results of a obtained by the approximate analysis above and numerical simulation
using the dog and horse models (Figure[S3JA). As shown in the figure, the approximate analysis almost
reproduced the simulation results in both models. We also compared the dependence of a on the parameters
1o, ko, and k between the approximate analysis and numerical simulation in the dog and horse models
(Figures[S3B and C, respectively). The approximate analysis reproduced similar tendencies to those of the
numerical simulation for yg and x. However, they had some differences, mainly because of linearization
errors.
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Figure S1. Gait dependence on €, and ¢, in the horse model. Time profile of the periodic solution (A)
for the symmetrical model (¢, = ¢, = 0) and those for two values of (B) ¢, with £, = 0, (C) ¢, with
ey = 0, and (D) g, with ¢, = aey,. Cyan, green, pink, and yellow regions incﬁcate flight (F), fore stance
(FS), hind stance (HS), and double stance (DS), respectively. Dotted lines indicate the periodic solution of
the symmetrical model. (E) Gait dependence on €, and ¢,.
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Figure S2. Gait dependence on physical parameters in the horse model. Condition of €5, and ¢, (¢,, = acy,)
to achieve Sequence 1 for three values of (A) ug, (B) kg, and (C) x, while holding the other parameters
constant at jip = 0.72, kg = 2.2, and x = 0.21. Sequences 5 and 9 appeared when ¢, < agj, and €, > agy,
respectively. Dependence of a on (D) g, (E) kg, and (F) .
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Figure S3. Comparison of a obtained using approximate analysis and numerical simulation. (A) Condition
of £, and ¢y, (¢, = agy,) to achieve Sequence 1 using dog and horse models. (B) Dependence of a on py,
ko, and  in the dog model. (C) Dependence of a on 1, kg, and « in the horse model.
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