
Supplementary Material

1 PARTICIPANT INCLUSION AND EXCLUSION INFORMATION

1.1 Participant Screening
We screened all subjects for MRI eligibility and, as part of the larger study, transcranial magnetic

stimulation (TMS) eligibility. We excluded those with any MRI or TMS contraindications (e.g.,
implanted metal, claustrophobia, or pregnancy). We also excluded individuals with: history of
any neurologic condition (e.g., stroke, Parkinson’s disease, seizures, or a concussion in the
last six months); a current psychiatric condition (e.g., active depression or bipolar disorder);
self-reported smokers; those who self-reported consuming more than two alcoholic drinks per day
on average; and those with history of treatment for alcoholism. All participants were right-handed
and self-reported their ability to walk unassisted for at least 10 minutes and to stand for at least
30 seconds with their eyes closed.

Prior to enrollment, we screened participants for suspected cognitive impairment over the phone
using the Telephone Interview for Cognitive Status (TICS; de Jager et al., 2003). We excluded
those who scored < 21 of 39 points; this is equivalent to scoring < 25 points on the Mini-Mental
State Exam (MMSE) and indicates probable cognitive impairment (de Jager et al., 2003). At the
first testing session, we re-screened participants for cognitive impairment using the Montreal
Cognitive Assessment (MoCA; Nasreddine et al., 2005). We added one point to the scores of
participants with ≤ 12 years of education (Nasreddine et al., 2005). We did not enroll those who
scored < 23 of 30 points (Carson et al., 2018).

1.2 MRI Scan Exclusions
Two older adults were excluded from analyses of the T 1-weighted images. One of these older

adults did not fit within the 64-channel coil, so a 20-channel coil was used instead; due to low
image quality, we excluded their data from further analysis. The other older adult T 1-weighted
scan was excluded due to an incidental brain tumor finding. Thus, n = 23 older adults for all
analyses involving the T 1-weighted images. Due to time constraints, a diffusion MRI was not
collected for one young and two older adults; thus, n = 36 young and n = 21 older adults for all
diffusion MRI analyses.

2 METHODS FOR PROCESSING OF T 1-WEIGHTED IMAGES
Here we provide further details regarding the preprocessing of the T 1-weighted images.

2.1 Gray Matter Volume
We processed the T 1-weighted scans using the Computational Anatomy Toolbox toolbox

(version r1725; Gaser et al., 2016; Gaser and Kurth, 2017) in MATLAB (R2019b). We implemented
default CAT12 preprocessing steps, including the new adaptive probability region-growing skull
stripping method. Briefly, the CAT12 pipeline includes segmentation into gray matter, white
matter, and cerebrospinal fluid, followed by spatial normalization from subject space to standard
space using high-dimensional Dartel registration and modulation. After CAT12 preprocessing
was complete, we visually examined data quality by displaying each modulated, normalized gray
matter segment and checking alignment between subjects and with the standard space template.
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We did not remove any scans as a result of visual inspection. All scans passed acceptable
CAT12 quantitative quality control thresholds (i.e., resolution, noise, bias, and image quality >
80). Finally, we used the CAT12 Check Sample Homogeneity function to evaluate correlations
between all gray matter segments. Gray matter segments for each participant were within two
standard deviations of the group mean, indicating that the sample contained no outliers. To
increase signal-to-noise ratio, we smoothed the modulated, normalized gray mattersegments
using Statistical Parametric Mapping 12 (SPM12, v7771; Ashburner et al., 2014) with an 8 mm
full width at half maximum kernel. We entered these preprocessed gray matter volume maps into
the group-level voxelwise statistical models. We used CAT12 to calculate total intracranial volume
for each participant for later use as a covariate in these group-level statistical analyses.

2.2 Cortical Surface Metrics
The CAT12 pipeline also extracts surface-based morphometry metrics (Dahnke et al., 2013;

Yotter et al., 2011a). To calculate surface metrics, CAT12 uses a projection-based thickness
algorithm that handles partial volume information, sulcal blurring, and sulcal asymmetries without
explicit sulcus reconstruction (Dahnke et al., 2013; Yotter et al., 2011a). We used CAT12 to extract
four surface metrics: 1) cortical thickness: the thickness of the cortical gray matter between
the outer surface (i.e., the gray matter-cerebrospinal fluid boundary) and the inner surface (i.e.,
the gray matter-white matter boundary) (Dahnke et al., 2013); 2) cortical complexity: fractal
dimension, a metric of folding complexity of the cortex (Yotter et al., 2011b); 3) sulcal depth: the
Euclidean distance between the central surface and its convex hull (Yun et al., 2013); and 4)
gyrification index: a metric based on the absolute mean curvature, which quantifies the amount
of cortex buried within the sulcal folds as opposed to the amount of cortex on the “outer” visible
surface (Luders et al., 2006). Prior to further analysis, we visually checked all cortical surface
data using CAT12’s Display Surfaces tool and then resampled and smoothed the surfaces at 15
mm for cortical thickness and 20 mm for the three other metrics (Gaser and Kurth, 2017). We
entered these resampled and smoothed surface files into the group-level voxelwise statistical
models.

2.3 Cerebellar Volume
To improve the normalization of the cerebellum (Diedrichsen, 2006; Diedrichsen et al., 2009),

similar to our past work (Hupfeld et al., 2021; Salazar et al., 2020, 2021), we applied specialized
preprocessing steps to the cerebellum to produce cerebellar volume maps. First, we entered
each participant’s whole-brain T 1-weighted image into the CEREbellum Segmentation (CERES)
pipeline (Romero et al., 2017). CERES uses a patch-based segmentation approach to segment
the cerebellum from the cortex; this automated method has been demonstrated to perform better
than either semi-automatic or manual cerebellar segmentation (Romero et al., 2017). We visually
inspected the resulting segmentations, created a binary mask from each participant’s CERES
cerebellar segmentation, and used this mask to extract their cerebellum from their whole-brain T 1-
weighted image. We then used rigid, affine, and Symmetric Normalization (SyN) transformation
procedures within the Advanced Normalization Tools package (ANTs; v1.9.17; Avants et al., 2010,
2011) to warp (in a single step) each participant’s extracted subject space cerebellum to a 1
mm cerebellar template in standard space, the Spatially Unbiased Infratentorial Template (SUIT)
template (Diedrichsen, 2006; Diedrichsen et al., 2009). The SUIT template was selected because
it offers greater detail of internal cerebellar structures compared to whole brain templates, which
improves cerebellar normalization (Diedrichsen, 2006; Diedrichsen et al., 2009). For this warping
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we used a version of the SUIT template with the brainstem removed, as the CERES cerebellar
segmentation does not include the brainstem.

The flowfields that were applied to warp these cerebellar segments to SUIT space were
additionally used to calculate the Jacobian determinant image, using ANTs’
CreateJacobianDeterminantImage.sh function; the Jacobian determinant encodes local shrinkage
and expansion for each voxel between subject space and the target image (i.e., here, the standard
space template). We multiplied each normalized cerebellar segment by its corresponding Jacobian
determinant to produce modulated cerebellar images in standard space for each participant.
Modulation preserves the volumes present in the original untransformed (subject space) image.
Lastly, to increase signal-to-noise ratio, we smoothed the modulated, normalized cerebellar
images using a kernel of 2 mm full width at half maximum and entered the resulting cerebellar
volume maps into the group-level voxelwise statistical models. Of note, we examined cerebellar
total volumes in our statistical analyses instead of segmenting the cerebellum by tissue type, in
order to avoid any inaccuracy due to low contrast differences between cerebellar gray and white
matter.

3 METHODS FOR PROCESSING OF DIFFUSION-WEIGHTED IMAGES
Here we provide more specific details regarding the preprocessing of the diffusion-weighted
images.

3.1 Visual Inspection and Signal Drift Correction
We first visually inspected raw scans for artifacts and excessive head movement. We

then corrected the diffusion-weighted images for signal drift (Vos et al., 2017) using the
ExploreDTI graphical toolbox (University Medical Center Utrecht, Netherlands, Version 4.8.6;
www.exploredti.com; Leemans et al., 2009) in MATLAB (R2019b).

3.2 Topup
We used the FMRIB Software Library (FSL)’s processing tool topup to estimate the

susceptibility-induced off-resonance field (Andersson et al., 2003). We entered a pair of b0

images collected with reversed phase-encode blips (i.e., the first volume of the diffusion-weighted
sequence with Anterior to Posterior encoding and one b0 volume from the Posterior to Anterior
sequence collected immediately before the diffusion-weighted sequence). This procedure yielded
a single corrected field map for use in eddy current correction.

3.3 Eddy
We used FSL’s eddy cuda to simultaneously correct the data for eddy current-induced

distortions and both inter- and intra-volume head movement (Andersson and Sotiropoulos,
2016). We entered the topup-calculated field map with the --topup flag. We used the
--repol flag to remove slices classified as outliers (i.e., where signal has been lost due to
subject movement during the diffusion encoding) and replace these slices with non-parametric
predictions by the Gaussian Process (Andersson et al., 2016). We set --slm=1, which specifies
the mathematical form for how the diffusion gradients cause eddy currents; this setting is
recommended when data are sampled on the half sphere, which was the case here. We used the
--estimate-movement-by-susceptibility flag, which provides additional corrections to
account for the effects of head movement on the diffusion signal (Andersson et al., 2018). We
set --mporder=17 to perform slice-to-volume movement correction (Andersson et al., 2017),
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which is a novel (but computationally expensive) method that corrects for within-volume head
movement. We set the temporal order of movement at 17, as FSL documentation recommends
using the number of excitations divided by 4 (i.e., # of slices / 4, so 69/4 ≈ 17). During eddy cuda,
rotations applied to each volume during motion correction were also applied to the corresponding
b vectors. We then plotted each subject’s volume-wise root mean square displacement provided
by eddy cuda. We considered a volume to be an outlier if its displacement was greater than 1
mm relative to the previous volume. Eight young and four older adults had one or more outlier
volumes removed (young adults: 2-8 volumes removed per subject; older adults: 1-3 volumes
removed per subject). Outlier volumes were removed from the eddy corrected image, as well as
from the b value and rotated b vector matrices.

3.4 Free-water (FW) Correction
We implemented a custom FW algorithm (Pasternak et al., 2009) using MATLAB (R2019b).

This algorithm estimates FW volume by fitting a bitensor model at each voxel of the preprocessed
DWI image (Pasternak et al., 2009). The bitensor model consists of: 1) a tissue compartment, i.e.,
the diffusion indices (including FA, RD, and AD) of water molecules within white matter tissue;
and 2) a FW compartment, reflecting the proportion of water molecules with unrestricted diffusion.
FW fractional volumes range from 0 to 1; a fraction of 1 indicates that a voxel is filled with freely
diffusing water molecules (e.g., as in the ventricles). The outputs of interest from this algorithm
include a whole-brain FW map and FW-corrected whole-brain maps of white matter indices,
denoted by subscript “t” to indicate that these metrics are based on the tissue compartment (FAt,
RDt, and ADt).

3.5 Tract-Based Spatial Statistics (TBSS)
We applied FSL’s tract-based spatial statistics (TBSS) processing steps to prepare the data for

voxelwise analyses across participants (Smith et al., 2006). Benefits of TBSS include avoiding
problems associated with suboptimal image registration between participants and eliminating the
need for spatial smoothing. TBSS uses a carefully tuned nonlinear registration and projection onto
an alignment-invariant tract representation (i.e., the mean FA skeleton); this process improves
the sensitivity, objectivity, and interpretability of analyses of multi-subject diffusion studies.

First, we used tbss 1 preproc to erode the FA images slightly and zero the end slices (to
remove likely outliers from the diffusion tensor fitting). Next, we used tbss 2 reg to calculate
the warps to bring each subject’s FA data to a common space (i.e., the FMRIB58 FA 1 mm
isotropic template) using the nonlinear registration tool FNIRT (Andersson et al., 2007b,a), which
employs a b-spline representation of the registration warp field (Rueckert et al., 1999). We then
used tbss 3 postreg to apply the warps calculated in step two, to calculate a mean FA image,
and to thin this mean image to create a mean FA skeleton. This mean FA skeleton represented
the centers of all tracts common to the whole group. Finally, we used tbss 4 prestats with a
threshold of 0.2 to project each participant’s aligned FA data onto the group mean skeleton.

Lastly, we applied FSL’s TBSS non FA script to the additional whole-brain maps (i.e., the FW,
FAt, RDt, and ADt maps). This applied the original nonlinear registration to these maps and
projected the data onto the original mean FA skeleton (using the original FA data to find the
projection vectors). Ultimately, these TBSS procedures resulted in skeletonized FW, FAt, ADt,
and RDt maps in standard space for each participant. These were the maps that we entered in
the group-level voxelwise statistical models.
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3.6 Image Processing for Region of Interest Analyses
CAT12 automatically calculates the inverse warp, from standard space to subject space, for

several volume-based atlases. We isolated multiple regions of interest (ROIs) from these atlases
in subject space: the lateral ventricles and pre- and postcentral gyri from the Neuromorphometrics
(http://Neuromorphometrics.com) volume-based atlas, and the thalamus, striatum, and
globus pallidus from the CoBra Subcortical atlas (Tullo et al., 2018; Fig. S1). We visually
inspected each ROI mask overlaid onto each participant’s T 1-weighted image in ITK-SNAP and
hand corrected the ROI mask if needed (i.e., if any voxels were not over the pre-specified region)
(Yushkevich et al., 2006). Using fslstats, we extracted the number of voxels in each ROI mask
in subject space and calculated the mean image intensity within the ROI in the subject space
cerebrospinal fluid (lateral ventricles) or gray matter segment (for all of the other ROIs). We then
calculated ROI volume in mL as: (number of voxels in the ROI mask)*(mean intensity of the tissue
segment within the ROI mask)*(volume/voxel). In subsequent statistical analyses, we used the
average of the left and right side structures for each ROI, and we entered these ROI volumes as
a percentage of total intracranial volume (to account for differences in head size).

3.7 FW ROIs
We also extracted FW values from the diffusion MRI maps for the same ROIs for which we

calculated gray matter volume. We rigidly registered the subject space T 1-weighted image to the
subject space FW image. (We used a rigid registration in this case because we previously used
topup to resolve distortions during diffusion-weighted preprocessing). We then used ANTs to
apply the inverse of that transformation to the subject T 1-space atlases described above. This
resulted in volumetric atlases for each participant in their native diffusion space. We then isolated
masks for the same ROIs described above from these atlases and visually inspected each ROI
mask overlaid onto each participant’s FW map in ITK-SNAP. Finally, we used fslstats to extract
mean image intensity in the FW map within each ROI mask. Here we used mean intensity as
our outcome metric (rather than volume in mL as above) to estimate the fractional volume of FW
within the ROI and obtain a metric more representative of microstructural FW, rather than the size
of the ROI which represents macrostructural atrophy. We calculated the average mean intensity
for the left and right side for each structure and used this average value in subsequent statistical
analyses.

3.8 Hippocampal ROIs
We implemented the Automatic Segmentation of Hippocampal Subfields (ASHS)-T1 (Yushkevich

et al., 2015) pipeline within ITK-SNAP (Yushkevich et al., 2015) to segment and extract the
volume in mL of three hippocampal structures: anterior hippocampus, posterior hippocampus,
and parahippocampal cortex. The ASHS pipeline uses a multi-atlas segmentation framework and
super-resolution approach; this outperforms alternative T 1 hippocampal segmentation pipelines
by reducing misclassification of meninges as gray matter (Yushkevich et al., 2015). Though
this pipeline is currently validated for use on only older adults (defined as those 55+ years
old; Yushkevich et al., 2015), for completeness, here we also implemented the pipeline on my
younger adult participants. For statistical analyses, we used the average of the left and right
side structures, and we entered these volumes as a percentage of total intracranial volume (to
account for differences in head size).

Frontiers 5

http://Neuromorphometrics.com


Supplementary Material

4 SUPPLEMENTARY FIGURES AND TABLES

Figure S1. Structural ROIs. Here we depict ROI masks overlaid onto subject space cerebrospinal
fluid (left) and gray matter (middle, right) segments for an exemplar young adult participant. In
every case, we used the average of the left and right side ROI in our statistical analyses. Left.
Lateral ventricle ROI masks. Middle. Five ROIs for which we extracted both gray matter volume
and FW. ROIs are shown over the gray matter segment obtained from the T1-weighted image.
We do not depict here the subject space FW image from which the FW values were obtained.
See Fig. S4 for illustrations of these ROIs overlaid onto the FW image. Right. Three hippocampal
ROIs.

.
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Figure S2. No age differences in the DTcost of gait and subtraction performance. The DTcost of
gait and subtraction performance metrics is depicted for older (blue) and young (orange) adults.
The red arrows indicate the direction of poorer performance during the dual compared to the
single task conditions. There were no statistically significant age group differences in the DTcost
of gait or serial subtraction performance. Gait speed was measured in m/s, step time variability
was calculated as the standard deviation of step time, accuracy was calculated as the percent of
subtractions problem answered correctly, and total number attempted was the total number of
sutraction problems the participant attempted to answer.
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Table S2. Regions of age difference in the relationship of structural ROIs with the DTcost of step
time variability

Predictors Estimates (SE) t FDR
corr. p

Ventricular volume (% TIV)
Lateral ventricle DTcost variability*age group 0.003 (0.001) 1.91 0.433

GM volume (% TIV)
Precentral gyrus DTcost variability*age group -0.0004 (0.0003) -1.40 0.553
Postcentral gyrus DTcost variability*age group -0.0001 (0.0003) -0.32 0.886
Thalamus DTcost variability*age group -0.0002 (0.0001) -1.61 0.524
Striatum DTcost variability*age group 0.0001 (0.0002) 0.43 0.886
Globus pallidus DTcost variability*age group 0.00001 (0.00003) 0.31 0.886

FW (mean intensity)
Precentral gyrus DTcost variability*age group 0.00001 (0.0001) 0.18 0.907
Postcentral gyrus DTcost variability*age group -0.00002 (0.00005) -0.51 0.886
Thalamus DTcost variability*age group -0.00001 (0.0001) -0.12 0.907
Striatum DTcost variability*age group 0.0001 (0.0001) 1.31 0.553
Globus pallidus DTcost variability*age group -0.00004 (0.0001) -0.41 0.886

Hippocampal volume (% TIV)
Ant. hippocampus DTcost variability*age group -0.0001 (0.0001) -0.97 0.780
Post. hippocampus DTcost variability*age group -0.0001 (0.0001) -0.86 0.786
Parahippo. cortex DTcost variability*age group -0.0002 (0.0001) -2.11 0.433

Note: Here we report the results of linear models testing for age differences in the DTcost of step time
variability, controlling for sex. For conciseness, we report only the estimates (standard error, SE), t, and
p values for the statistical test of interest: the interaction of age group with the DTcost of step time
variability. P values for the interaction term were FDR-corrected (Benjamini and Hochberg, 1995). TIV =
total intracranial volume; Ant = anterior; Post = posterior; Parahippo = parahippocampal. *pFDR−corr <
0.05.
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