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1 SUPPLEMENTARY METHODS
1.1 Statistical analysis of trajectories

We used multivariate hidden Markov models (HMM) to analyse the time-regular trajectories of 33 great
white sharks (Carcharodon carcharias). HMMs are models for analysing time series of observations
recorded at regular time intervals. They are now commonly used in the animal movement context for
inferring the underlying movement modes that give rise to observed movement metrics (e.g., Langrock
et al. (2012)). The classical HMM formulation assumes a first-order dependence between the underlying
states, and between the observations and the underlying states. HMMs for animal movement often involve
modelling two derived variables (one scalar and one angular) from relocation data, e.g., the step length and
turning angle between consecutive observed locations in the case of terrestrial movement.

The trajectory reconstruction provided a step length and a turning angle. We modelled step length using a
gamma distribution, which is suitable for modelling continuous, positive-valued variables, as in step length.
We modelled the angular state variable using a wrapped Cauchy distribution, which has two parameters,
the mean and concentration, where the latter relates to how peaked the distribution is. We only estimated
the concentration parameter while assuming the mean to be zero, since we had no reason to expect turning
to be systematically biased in one direction.

We intentionally kept the structure of the HMM simple to facilitate interpretability, since little is known
about white shark movement behaviour, or the relationship between movement and fisheries interactions
and use of MPAs. We used the results of the HMM in subsequent spatial analyses to 1) quantify overlap
between shark movement and exposure to risk of capture in various fisheries, and 2) quantify overlap
between shark movement and MPAs. This two-stage analysis is appealing because it allows for a simple,
interpretable HMM, and distinct, interpretable spatial analyses. The downside of this approach is the lack
of propagation of uncertainty from the estimated locations and state assignments through to the spatial
analyses, and the lack of an explicit link between the inferred states and the spatial locations at which they
occur. Under our current modelling setup we cannot answer the question “why do certain states happen in
particular locations?”. To answer this question we would need a more complex model structure that would
likely hinder interpretability. With this in mind, and in light of the paucity of the current knowledge base
about how white sharks use their environment, particularly within the South African EEZ, we chose to use
this two-stage approach in this study (see Glennie et al. (2021) for more details on the pitfalls of HMMs for
ecology). A map of state probabilities in included in the main manuscript (Figure 4, main manuscript) to
make the degree of uncertainty in state assignments more explicit. A visual assessment suggests that state
assignments are generally clear-cut, with low uncertainty, since most colours are near either end of the
colour spectrum.
1.1.1 HMM structure and implementation

Following a standard animal movement HMM structure, an unobserved Markov chain is assumed to
determine the behavioural states and the parameters of the state-dependent distributions associated with
the observed variables (Zucchini et al. 2017). In this HMM analysis, the movement states are treated as
unknown, and our research question relates to inferring information about the different types of movement
carried out by white sharks. We fit one model to all sharks jointly and therefore estimate one set of
parameters for all individuals.
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The HMM parameters are estimated using numerical maximisation of the likelihood, implemented in R
R Core Team (2019), using the momentuHMM package McClintock and Michelot (2018). In this package,
the computation of the covariate-dependent transition probability matrices and the forward algorithm are
coded in C++. The forward algorithm is an efficient way of evaluating the likelihood and is one reason
for the popularity of HMMs – it makes them fast to fit. The forward algorithm corresponds to a recursive
calculation of the likelihood with computational costs that scale linearly with the number of observed time
points and this renders numerical maximum likelihood estimation feasible Zucchini et al. (2017).

Based on a lack of prior knowledge about white shark movement behaviour from the literature, and
the scale of the error associated with the locations in the current dataset, we only fitted HMMs with 2
movement states in the interest of biological interpretability, following advice by Pohle et al. (2017). We
expected sharks to exhibit more rapid, directed movement towards when travelling to an area of interest,
compared to more sinuous, slower movement while in an area of interest, although these motivational
assumptions are largely speculative in the absence of information about white shark movement ecology
and hunting behaviour.
1.1.2 Likelihood of the HMMs

Following Supplementary Material S4 from Photopoulou et al. 2020, we can write the likelihood of an
HMM with N states and observation vectors z1, ..., zT can be written as a matrix product:

L = δP(z1)
T∏
t=2

ΓtP(zt)1
′ (S1)

where δ is a row-vector containing the initial state distribution, Γt represents theN×N transition probability
matrix at time point t and 1′ is a row-vector of ones. P denotes a N × N diagonal matrix containing
the values of the N joint state-dependent densities evaluated at the observation vector zt. We assume the
observed variables to be contemporaneously conditionally independent, given the current state. Thus, for
each state, the joint state-dependent density is the product of the univariate state-dependent densities which
are associated to the observed variables.

In this analysis the observation vector at a given time step, zt is of length two, and includes step-length
and turning angle at each time step t along the movement track. To investigate the effect of season and
individual covariates on movement behaviour, we include the temporal covariate day of the year (doy), the
individual’s sex, and its total length (TL) as covariates on the transition probabilities using a mutinomial
logit link, so that the probability of transitioning from state i to state j at time t is:

ln
(
γij(t)

γii(t)

)
= β0ij + β1ijcos(2πdoyt/365) + β2ijsin(2πdoyt/365) + β3ijsext + β4ijTLt (S2)

Given we are not fitting any random effects, the log-likelihood of interest is the sum of log-likelihoods
corresponding to the different sharks.
1.1.3 Model assessment

We used the AIC weights to choose between models with different covariates. We used the Viterbi
algorithm to obtain the most likely state sequence for the model with most support, and we also calculated
the state probabilities, which give the probability of being in a given state at each point in the observed
time series and conveys uncertainty in state assignments. We examined model fit for each experiment by
calculating the pseudo-residuals for each of the state-dependent variables (step length, turning angle) and
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checking their distributions and the residual autocorrelation, using the acf function in R R Core Team
(2019).

2 SUPPLEMENTARY RESULTS
2.1 Candidate models

In the main text we presented only the top model. Here we describe all models that we tried, including
their AIC scores and AIC weights (Table S1). The top two models are essentially the same, since total
length is used to define lifestage or maturity, but we present both models here for completeness.
2.2 Diagnostics on best models

The distribution of pseudo-residuals for both state-dependent variables was symmetrical, suggesting no
systematic lack of model fit (Figure S1). There was some residual autocorrelation for step length up to a
lag of about 60 time steps, suggesting a more persistent serial dependence in consecutive step lengths than
was captured by this model. The model was fitted at a 12-hour time step, so 60 steps translates to about 30
days. This might have to do with the time spent in a given state, and would be interesting to investigate in a
future study.

Figure S1. Pseudo-residuals for each state-dependent variable (step length and turning angle) generated
from a HMM for white shark movement. The x-axis shows the theoretical quantiles for the residuals, and
the y-axis shows the density of residuals so that the area under each histogram sums to 1. The spread of the
distributions for the residuals is slightly wide but they are both nice and symmetrical.
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Table S1. All models fitted to the white shark tracking data. Model names correspond to the object names
in the R code found in the GitHub repository https://github.com/theoniphotopoulou/
white_shark_hmm (a final snapshot of this repository will replace this link for publication). The
covariates used in the following models are sex (female, male), total length (TL; in centimetres), lifestage
(juvenile, sub-adult, adult; derived from total length) and day of the year (doy; 1-365).

Model name Covariate(s) Acting on AIC
score weight

wsm6a Sex + TL + cos(doy) + sin(doy) Transition probabilities 159878 0.704
wsm1 Flower distance Transition probabilities 159879 0.294
wsm4 Lifestage + cos(doy) + sin(doy) Transition probabilities 159890 0.002
wsm5 Sex + lifestage Transition probabilities 159892 0.000
wsm3 Sex + cos(doy) + sin(doy) Transition probabilities 159904 0.000
wsm2 Cos(doy) + sin(doy) Transition probabilities 159951 0.000
wsm0 - - 159956 0.000
wsm7 Sex + TL, Transition probabilities, No convergenceCos(doy) + sin(doy) Step length mean

2.3 Summary of shark locations and fishing effort
Here we show annual breakdown of the number of active shark tags, the total daily locations and the total

fishing effort as the sum of hooks for the two fisheries; pelagic and demersal shark longline.

Table S2. Annual summary of the number of active shark tags, daily locations and the number of hooks
set in the pelagic and demersal longline fisheries.

Year Number of active Total daily Total fishing effort (hooks)
shark tags locations Pelagic longline Demersal longline

2012 31 2392 4242642 440200
2013 14 872 4778861 326670
2014 4 76 3031507 137720

2.4 Administration of drugs and their dosages used on white sharks
The tagging program was designed to release tagged animals in good condition with ‘normal’

physiological and behavioural functioning. In South Africa, legally, a veterinarian must be present during
surgical or drug procedures. A registered veterinarian from The Department of Agriculture Veterinary
Services was present to monitor and assist with capture, tagging, sampling, surgery and drug administration
of white sharks (Carcharodon carcharias) satellite tagged in this study.

Therapeutic drugs were administered as a precaution to captured white sharks to reduce the effects of
stress and capture myopathy, metabolic acidosis and post-release infection (Table S3 and S4).

Table S3. A list of therapeutic drugs used on white sharks in the study to reduce stress, capture myopathy,
metabolic acidosis and post-release infection.

Drug Reason for use
Biosolamine (ml) To reduce capture myopathy
PREDEF2X (ml) An anti-inflammatory
Amikacin (1000mg/ml) As a general antibiotic
Amikacin (500mg/ml) As a general antibiotic
Vitamin B complex (ml) To reduce stress
Vitamin AD3E (ml) To reduce stress
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Table S4. The dosage regimen (ml) used on white sharks in the study to reduce stress, capture myopathy,
metabolic acidosis and post-release infection. Dosages were determined based on the estimated weight (kg)
of the shark.

Total Mass PREDEF2X Biosolamine Amikacin Amikacin Vitamin B Vitamin
length class (ml) (ml) (1000mg/ml) (500mg/ml) complex AD3E

(m) (kg) (ml) (ml)
2.10 100 3 5 1.5 3 5.0 1
2.80 200 6 10 3.0 6 7.5 2
3.25 300 9 15 4.5 9 10.0 3
3.55 400 12 20 6.0 12 12.5 4
3.75 500 15 25 7.5 15 15.0 5
3.85 600 18 30 9.0 18 17.5 6
4.15 700 21 35 10.5 21 20.0 7
4.20 800 24 40 12.0 24 22.5 8
4.35 900 27 45 13.5 27 25.0 9
4.40 1000 30 50 15.0 30 25.0 10
4.55 1100 30 50 16.5 33 25.0 11
4.60 1200 30 50 18.0 36 25.0 12
4.70 1300 30 50 19.5 39 25.0 13
4.75 1400 30 50 21.0 42 25.0 14
4.80 1500 30 50 22.5 45 25.0 15
4.90 1600 30 50 22.5 45 25.0 16
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