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Computational analysis of intrinsic disorder predisposition of human BMI1 protein. 

 

Methods  

Intrinsic disorder predisposition of human BMI1 was analyzed using a set of commonly 

used per-residue disorder predictors, such as PONDR® VLXT [1], PONDR® VL3 [2], 

PONDR® VLS2B [3], PONDR® FIT [4], IUPred2 (Short) and IUPred2 (Long) [5; 6; 7], 

which were selected for their specific features. The outputs of the evaluation of the per-

residue disorder propensity by these tools are represented as real numbers between 1 

(ideal prediction of disorder) and 0 (ideal prediction of order). A threshold of ≥ 0.5 was 

used to identify disordered residues and regions in a query protein. Functional disorder 

profile was generated for human BMI1 by the D2P2 platform (http://d2p2.pro/) [8], which 

is a database of predicted disorder for a large library of proteins from completely 

sequenced genomes [8]. D2P2 database uses outputs of IUPred [6], PONDR® VLXT [1], 

PONDR® VSL2B [3], PrDOS [9], PV2 [8], and ESpritz [10]. The database is further 

supplemented by data concerning location of various curated posttranslational 

modifications and predicted disorder-based protein binding sites, known as molecular 

recognition features, MoRFs, which are predicted by ANCHOR algorithm [11; 12]. The 

interactivity of BMI1 was analyzed utilizing Search Tool for the Retrieval of Interacting 

Genes (STRING, http://string-db.org/) [13; 14], which generates a network of predicted 

associations based on predicted and experimentally validated information on the 

interaction partners of a protein of interest. In the corresponding network, the nodes 



correspond to proteins, whereas the edges show predicted or known functional 

associations. Seven types of evidence are used to build the corresponding network, 

where they are indicated by the differently colored lines: a green line represents 

neighborhood evidence; a red line - the presence of fusion evidence; a purple line - 

experimental evidence; a blue line – co-occurrence evidence; a light blue line - database 

evidence; a yellow line – text mining evidence; and a black line – co-expression evidence 

[13; 14].  

 

Results  

We mentioned in the main manuscript BMI1 as a multifunctional protein. This 

multifunctionality suggests that BMI1 belongs to the group of intrinsically disordered 

proteins or hybrid proteins containing ordered domain(s) and functional intrinsically 

disordered region(s) which do not fit into the classical “one gene – one protein – one 

function” model. They do not have unique 3D structures but play important roles in various 

biological processes [15; 16; 17; 18; 19; 20; 21; 22]. It is now recognized that these 

proteins constitute a very substantial part of the proteomes of all living organisms [23; 24; 

25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41] and are structurally 

described as highly dynamic ensembles of rapidly interconverting conformations (i.e., 

they remain structurally ‘floppy’ [42; 43]). This lack of fixed 3D structure, as well as their 

structural ‘floppiness’, define their ability to be multifunctional. Such proteins can be 

involved in regulation and control of various signaling processes while also serving as 

promiscuous binders [16; 17; 18; 43; 44; 45; 46; 47; 48; 49]. Furthermore, there is a strong 

link between the intrinsic disorder and pathogenesis of many diseases [50; 51], and 



structure-less proteins are commonly found in cancer [52], neurodegeneration [53; 54], 

diabetes mellitus [55], cardiovascular disease [56], and amyloidosis [50]. To the best of 

our knowledge, the presence and functionality of the intrinsic disorder aspect of BMI1was 

not considered before this study. Bioinformatics analysis of human BMI1 protein was 

conducted to fill this gap.   

  

Human Polycomb complex protein BMI1 is a component of a Polycomb Group (PcG) 

multiprotein PRC1-like complex required to maintain the transcriptionally repressive state 

of many genes that act via chromatin remodeling and modification of histones. BMI1 is a 

326-residue long protein possessing a RING/U-box domain (residues 14-69) that contains 

a C3HC4 zinc finger motif of RING-type (residues 18-57), a Pro-Ser rich region (residues 

251-326), and a nuclear localization signal (residues 81-95). The latter is a region 

involved in interaction with the N-terminal domain of the RING finger protein RING1B [57], 

and two functional regions required for interaction with polyhomeotic protein PHC2 

(residues 162-182) [58] and transcription factor E4F1 (residues 164-228) [59]. Structural 

information is now available for the N-terminal region of BMI1 (residues 5-101) containing 

RING/U-box domain in complex with the N-terminal domain of the RING finger protein 

RING1B [57] or within the human RING1B-BMI1-UBCH5C E3-E2 complex (the PRC1 

ubiquitylation module) bound to its nucleosome core particle substrate [60]. Also, an NMR 

solution structure was solved for the fusion protein containing PHC230–64 fragment fused 

to the N-terminus of the central BMI1 UBL domain (residues 130-231; [58]). Figure 1S B 

shows that this construct is characterized by noticeable conformational flexibility, 

especially in loop regions.  



 

Intrinsic disorder predisposition of human BMI1. Data presented in the previous 

section suggest that structural coverage of the BMI1 sequence constitutes 59.5% of its 

total length whereas the remaining 40.5% belongs to the “dark proteome” category, 

typically defined by the presence of intrinsic disorder [61; 62; 63]. Therefore, a set of 

commonly utilized disorder predictors, PONDR® VLXT, PONDR® VL3, PONDR® VLS2B, 

PONDR® FIT, IUPred2 (Short), and IUPred2 (Long), was used to check if there was an 

intrinsic disorder predisposition of human BMI1. Figure 1S C shows the resulting disorder 

profile, which indicates the presence of three intrinsically disordered regions (IDRs): 

residues 1-5, 100-162, and 234-326. These disordered regions coincide with the regions 

missing structural characterization.  

 

Potential functionality of intrinsically disordered regions in BMI1.  The D2P2 platform 

(http://d2p2.pro/), which is a database of predicted disorder for a large library of proteins 

from completely sequenced genomes, was utilized to determine whether these IDRs have 

some relation to BMI1 functionality [8]. D2P2 uses outputs of several per-residue disorder 

predictors, such as IUPred, PONDR® VLXT, PrDOS, PONDR® VSL2, PV2, and ESpritz. 

The database is further supplemented by the data on the locations of predicted SCOP 

domains, conserved Pfam domains, and sites of various posttranslational modifications 

and predicted disorder-based protein binding sites, known as molecular recognition 

features, MoRFs. MoRFs are interaction-prone segments of IDRs exhibiting molecular 

recognition and binding functions and facilitate interactions with physiological partners. 

MoRFs undergo disorder-to-order transitions as result of interaction with specific partners, 

http://d2p2.pro/


and such binding-induced folding allows them to perform various biological functions [46; 

64; 65; 66; 67]. However, the extended conformation, low compactness, and high solvent 

accessibility make IDRs excellent targets for post-translational modifications (PTMs) and 

proteolytic degradation, typical methods of activity regulation [16; 68; 69; 70; 71]). Figure 

1S D represents a functional disorder profile of human BMI1 generated by D2P2 and 

shows that IDRs of this protein serve as sites of various PTMs (ubiquitination, acetylation, 

and phosphorylation) and also include five MoRFs (residues 130-138, 204-214, 264-275, 

282-294, and 303-326). This indicates that 21% of BMI1 residues are involved in disorder-

based interactions with specific partners.  

 

Binding promiscuity of human BMI1. The multifunctionality of BMI1 is related to its 

ability to interact with multiple partners. Figure 1S E represents a dense protein-protein 

interaction network centered at the BMI1 generated by the online resource Search Tool 

for the Retrieval of Interacting Genes (STRING, https://string-db.org/). This network 

integrates the information on protein-protein interactions (PPIs), complements it with 

computational predictions, and returns a PPI network showing all possible PPIs of a query 

protein [13; 14]. Figure 1S E shows that the BMI1-centered network contains 64 nodes 

(proteins) connected by 1,006 edges (PPIs). In this network, the average node degree is 

31.4 (i.e., on average each member of this PPI network has 41.4 interactions with other 

network members). The average local clustering coefficient for BMI1is 0.921. The 

clustering coefficient defines how close its neighbors are to being a complete clique.  It is 

equal to 1 if every neighbor connected to a given node Ni is also connected to every other 

node within the neighborhood. Conversely, it is equal to 0 if no node that is connected to 

https://string-db.org/


a given node Ni connects to any other node that is connected to Ni. Since the expected 

number of interactions among proteins in a similar size set of proteins randomly selected 

from human proteome is equal to 137, this PPI network has significantly more interactions 

than expected, being characterized by a PPI enrichment p-value of < 10-16. Therefore, 

this analysis shows that BMI1 can be considered a highly connected hub protein. 

 

Discussion 

The remarkable multifunctionality of BMI1 can be explained by its high binding 

promiscuity associated with its notable levels of intrinsic disorder. Figure 1S shows that 

although structural information is available for two domains of this protein, its actual 

structural coverage constitutes 59.5%, indicating that 40.5% of BMI1 is structurally 

uncharacterized, likely due to the high conformational flexibility of corresponding regions. 

In line with these observations, computational analysis revealed that almost half of human 

BMI1 protein (49.4%) is expected to be disordered (Figures 1S C and 1S D). 

Furthermore, this protein contains multiple PTM sites and several disorder-based 

interaction sites that can undergo disorder-to-order transition at binding to specific 

partners (Figure 1S D). These data indicate that BMI1 has a strong interaction potential, 

and the activity of this protein is subject to regulation via PTMs. All this defines the 

exceptional binding promiscuity of BMI1, making it an important hub protein linking at 

least 63 partners (Figure 1S E). These observations are in line with the current knowledge 

on the structural principles of the organization and control of PPI networks, where the hub 

proteins (or their partners) are enriched in intrinsic disorder [72; 73; 74]. This defines the 

capability of such intrinsically disordered proteins and hybrid proteins containing ordered 



domains and IDRs to serve as promiscuous interactors involved in one-to-many and 

many-to-one binding [75; 76]. 
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