
 

 

Human non syndromic and syndromic hearing loss with vestibular dysfunction        
  

 
Human related 

SNHL 

(OMIM) 

Gene 

symbol 

 

Location Ear pathology/ gene function Vestibular findings in human  Vestibular findings in 

animal models 

References 

NON SYNDROMIC HEARING LOSS 

DFNA1 

(602121) 

DIAPH1 5q31.3 Hair bundle development and 

functioning 

 

Vestibular dysfunction not fully 

penetrant. Findings consistent with 

endolymphatic hydrops. 

 [1] 

DFNA3 

(121011-604418) 

GJB2 – 

GJB6 

13q12.11 

 

Cochlea ion homeostasis Vestibular dysfunction not fully 

penetrant. 

Otolithic and canalar dysfunction. 

Reduced inner ear size, 

abnormal distribution of 

otoliths and reduced otolith 

size and developmentally 

delayed semicircular canals 

in cx30.3 zebrafish. 

[2-4] 

 

 

DFNA6/14 

(606201) 

WFS1 4p16.1 Oxidative stress, metabolims & 

mitochondria 

Vestibular dysfunction in few 

patients. 

Vestibular dysfunction in the 

mouse model (tilted – tlt): 

complete lack of otoconia in 

utricule and saccule. 

[5, 6] 

 

 

DFNA7 

(600298) 

LMX1A 1q23.3 Hair cell’s adhesion and 

maintenance 

About half of the affected 

individuals display vestibular 

dysfunction. 

Vestibular dysfunction in the 

mouse model (Lmx1a): 

circling behavior, impaired 

righting reflex, 

hyperactivity.  

[7-9]  

 

 

DFNA9 

(603196) 

COCH 14q12 Transmembrane or secreted 

proteins and extracellular matrix 

Variable vestibular dysfunction up 

to severe vestibular 

deficit/areflexia. 

Vestibular dysfunction in the 

mouse model: abnormal 

vestibular evoked potentials 

[10-18] 

 

DFNA11 

(276903) 

MYO7A   11q13.5 Hair bundle development and 

functioning 

 

Vestibular dysfunction not fully 

penetrant. 

Variable degree of vestibular 

dysfunction. 

 [19-21] 

 

 

DFNA13 

(120290) 

COL11A2 6p21.32 Transmembrane or secreted 

proteins and extracellular matrix 

Various caloric abnormalities 

observed in about half of the 

subject 

 [22] 

 

 

DFNA15 

(602460) 

POU4F3 5q32 Hair cell’s adhesion and 

maintenance 

Vestibular dysfunction not fully 

penetrant. 

Mild to severe vestibular 

dysfunction. 

Pou4f3ddl/ddl mice exhibit 

vertical head tossing, 

circling and general 

hyperactive behavior 

indicative of a vestibular 

dysfunction 

[23-25] 

 

 

 

 

DFNA17 

(160775) 

MYH9 22q12.3 Hair cell’s adhesion and 

maintenance 

Associated to cochleosaccular 

degeneration.  

 [26] 

 

DFNA20/26 

(102560) 

ACTG1 17q25.3 Hair bundle development and 

functioning 

Vestibular dysfunction not fully 

penetrant. 

 [27] 

 



 

 

 Mild to severe hyporeflexia.  

DFNA22 

(600970) 

MYO6 6q14.1 Hair bundle development and 

functioning 

 

 Vestibular dysfunction in 

mouse with MYO6 mutation 

: the Snell's waltzer (sv) 

mouse and Turner (Tur) 

mouse. 

[28, 29] 

 

 

DFNA28 

(608576) 

GRHL2 8q22.3 Transcriptional regulation  Vestibular malformation and 

severe vestibular dysfunction 

in zebrafish model. 

[30] 

 

 

DFNA41 

(600844) 

P2RX2 12q24.33 Cochlea ion homeostasis  Vestibular dysfunction 

observed in knock-in mouse 

model of DFNA41: impaired 

balance on rotarod and beam 

walking. 

[31] 

 

 

DFNA69 

(184745) 

KITLG 12q21.32 Transmembrane or secreted 

proteins and extracellular matrix 

Vestibular dysfunction not fully 

penetrant. 

 [32] 

 

DFNA76 

(602734) 

PLS1 3q23 Hair bundle development and 

functioning 

 

 Thresholds for vestibular 

evoked potentials are 

significantly elevated in 

mice lacking functional 

PLS1. 

[33] 

 

 

DFNA78 

(610981) 

SLC12A2 5q23.3 Cochlea ion homeostasis Vestibular dysfunction with 

delayed motor skills.   

Severe vestibular 

dysfunction observed in 

Slc12a2-/- mice: head 

bobbing, circling, collapse of 

vestibular compartments and 

epithelia. 

 

[34-36] 

 

 

DFNB1 

(121011 – 604418) 

GJB2 -GJB6 

(Cx26 -

Cx30) 

13q12.11 Cochlea ion homeostasis Vertigo reported by approximately 

half of the affected subjects. 

Reduced inner ear size, 

abnormal distribution of 

otoliths and reduced otolith 

size and developmentally 

delayed semicircular canals 

in cx30.3 zebrafish. 

[4, 37] 

 

 

 

DFNB2 

(276903) 

MYO7A   11q13.5 Hair bundle development and 

functioning 

 

Vestibular dysfunction not fully 

penetrant. 

 [38] 

 

 

DFNB3 

(602666) 

MYO15A 17p11.2 Hair bundle development and 

functioning 

 

 Vestibular dysfunction in 

mouse model of DFNB3 

shaker-2: head-tossing, 

circling behavior 

[39, 40] 

 

 

DFNB4 

(605646) 

SLC26A4 7q22.3 Cochlea ion homeostasis Enlarge vestibular aqueduct and 

possible Mondini dysplasia. 

Vestibular dysfunction not fully 

penetrant. 

 [41] 

 

 



 

 

DFNB6 

(607237) 

TMIE 3p21.31 Hair bundle development and 

functioning 

 

 Vestibular dysfunction in 

mouse model of DFNB6 

spinner: head-shaking, 

circling behavior.  

[42] 

 

 

DFNB8/10 

(605511) 

TMPRSS3 21q22.3 Cochlea ion homeostasis Vestibular dysfunction not fully 

penetrant.  

Mild vestibular dysfunction.  

Tmprss3Y260X mice display 

mild vestibular syndrome 

that correlated histologically 

with a slow degeneration of 

saccular hair cells. 

[43, 44] 

 

 

DFNB16 

(606440) 

STRC 15q15.3 Hair bundle development and 

functioning 

 

Episodic vertigo. 

Primarly saccular and utricular 

dysfunction. 

 

 [45] 

 

 

DFNB18B 

(604487) 

OTOG 11p15.1 Transmembrane or secreted 

proteins and extracellular matrix 

Vestibular dysfunction not fully 

penetrant. 

Some individuals have delayed age 

of walking. 

Severe vestibular 

dysfunction in mouse model 

with Otog mutation 

(Twister).  

[46-48] 

 

 

DFNB23 

(605514) 

PCDH15 10q21.1 Hair bundle development and 

functioning 

 

 Vestibular dysfunction in 

animal model of recessive 

mutations of PCGH15 (Ames 

Waltzer (av) mouse) 

[49] 

 

 

DFNB25 

(613283) 

GRXCR1 4p13 Hair bundle development and 

functioning 

Vestibular dysfunction not fully 

penetrant. 

 [50] 

 

DFNB31 

(607928) 

WRHN 9q32 Hair bundle development and 

functioning 

 

 Vestibular dysfunction in 

mouse model of DFNB31 

Whirler (wi): circling and 

head-bobbing. 

[51] 

 

 

DFNB36 

(606351) 

ESPN 1p36.31 Hair bundle development and 

functioning 

Vestibular areflexia.   [52] 

 

 

DFNB37 

(600970) 

MYO6 6q14.1 Hair bundle development and 

functioning 

 

Vestibular dysfunction in many 

individuals with delayed age of 

walking.  

 [53] 

 

 

DFNB59 

(610219) 

PJVK 2q31.2 Oxidative stress, metabolims & 

mitochondria 

Central vestibular dysfunction.  [54] 

 

DFNB68 

(605111) 

S1PR2 19p13.2 Cochlea ion homeostasis  Vestibular dysfunction 

observed in S1pr2−/− mouse: 

head tilting, poor swimming 

ability, progressive 

deterioration of vestibular 

epithelium and loss or 

deformity of utricular and 

saccular otoconia. 

 

Vestibular dysfunction in 

zebrafish model: Structural 

[55-59] 

 

 

 



 

 

defects are identified within 

the otic vesicle, the 

semicircular canals, otoliths, 

utricle, and saccule. 

 

DFNB82 

(609245) 

GPSM2 1p13.3 Hair bundle development and 

functioning 

 

 Vestibular dysfunction in 

mouse model with GPSM2 

mutation: hyperactive 

behavior, circling, short 

stereocilia. 

[60] 

 

 

DFNB84 

(603317) 

PTPRQ 12q21.31 Hair bundle development and 

functioning 

 

Severe vestibular dysfunction in all 

individuals.  

Hair bundle defects are 

observed in the vestibule of 

Ptprq−/− mice. 

 

Vestibular dysfunction 

observed in Doberman 

Pinschers with PTPRQ 

mutation: head tilt. 

[61-63] 

 

 

 

DFNB101 

(615762) 

GRXCR2 5q32 Hair bundle development and 

functioning 

 

 Mouse Grxcr2 deletion 

mutants exhibit abnormal 

vestibular evoked potentials. 

[64] 

 

 

DFNB103 

(607293) 

CLIC5 6p21.1 Hair bundle development and 

functioning 

Cochlea ion homeostasis 

Vestibular dysfunction later in life.  

 

Vestibular dysfunction in 

mouse model of DFNB103 

Jitterbug (jbg/jbg). 

[65, 66] 

DFNB108 

(602336) 

ROR1 

 

1p31.3 

 

Synaptic transmission Fusion of the cochlea and vestibule 

into a common cavity. 

 [67] 

 

DFNB109 

(612959) 

ESRP1 1p13.3 Hair cell’s adhesion and 

maintenance 

Vestibular dysplasia.  Mouse Esrp1-/-: common 

crus and lateral semicircular 

canal dysgenesis. 

[68] 

 

 

DFNB110 

(603196) 

COCH 14q12 Transmembrane or secreted 

proteins and extracellular matrix 

Two individuals tested in their first 

decade of life: one with mild 

vestibular impairment, the other 

normal vestibular function.  

 [69] 

 

 

DFNB111 

(604873) 

MPZL2 11q23.3 Hair cell’s adhesion and 

maintenance 

Slight modifications of the 

vestibular function. 

 [70] 

 

DFNX2 

(300039) 

POU3F4 Xq21.1 Transcriptional regulation Middle and inner ear malformation 

with perilymphatic Gusher. 

Severe vestibular dysfunction.  

Pou3f4-deficient mice: 

impaired balance, loss of 

vestibular hair cells 

[71, 72] 

 

 

SYNDROMIC HEARING LOSS 

Jervell and Lange-

Nielsen syndrome 1 

KCNQ1  Cochlea ion homeostasis Severe vestibular dysfunction and 

delayed motor skills. 

Vestibular dysfunction in 

Kcnq1−/− mice: head-

bobbing, circling, trouble 

righting themselves collapse 

of endolymphatic space. 

[73, 74] 

 

Jervell and Lange-

Nielsen syndrome 2 

KCNE1  Cochlea ion homeostasis Severe vestibular dysfunction and 

delayed motor skills. 

Vestibular dysfunction in 

Kcne1−/− mice: head-

[74, 75] 

 



 

 

bobbing, circling, abnormal 

development of the 

endolymphatic space, severe 

degeneration of the hair cells 

 

Waardenburg Type 1 PAX3  Melanocyte development Vestibular dysfunction can be 

observed.  

 [76] 

 

 

Waardenburg Type 2 MITF SNAI2 

SOX10 

 Melanocyte development 

Melanocyte deficiency 

Vestibular dysfunction can be 

observed.  

Dysmorphic vestibular anatomy 

linked to SOX10 mutation: 

bilateral agenesis or hypoplasia of 

the semicircular canals or both, 

associated with an enlarged 

vestibule and a cochlear deformity. 

 [76, 77] 

 

 

Waardenburg Type 3 PAX3  Melanocyte development   [76] 

Waardenburg Type4 EDNRB 

EDN3 

SOX10 

 Melanocyte development Severe vestibular dysfunction are 

observed.  

Dysmorphic vestibular anatomy 

linked to SOX10 mutation: 

bilateral agenesis or hypoplasia of 

the semicircular canals or both, 

associated with an enlarged 

vestibule and a cochlear deformity. 

 [76, 77] 

 

 

USHER1B MYO7a    Hair bundle development and 

functioning 

 

Severe vestibular dysfunction with 

delayed motor skills.  

 

Mouse model (Shaker): 

head-tossing, hyperactivity 

and circling behaviors. 

Disorganized stereociliary 

bundles. 

 

Zebrafish model (mariner 

mutant): circling swimming 

behavior. Disorganized 

stereociliary bundles. 

[81-84] 

 

 

USHER1D CDH23  Hair bundle development and 

functioning 

 

Severe vestibular dysfunction in 

most individuals with delayed 

motor skills.  

Missense mutations result in either 

a milder form, which overlaps with 

clinical types USH2 or 3, or 

nonsyndromic deafness (DFNB12) 

 

Severe vestibular 

dysfunction in mouse model 

of USH1D Waltzer: 

hyperactivity, head-tossing, 

circling behavior. 

 

Severe vestibular 

dysfunction in zebrafish 

model: balance defect, 

circling swimming behavior. 

[84-88] 

 

USHER1F PCDH15  Hair bundle development and 

functioning 

Severe vestibular dysfunction with 

delayed motor skills.  

Vestibular dysfunction 

described for mouse with 

[49, 84, 89, 90] 

 



 

 

  mutation of Pcdh15 Ames 

waltzer (av) and distorded 

stereocilia bundles. 

 

Vestibular defect in 

zebrafish Pcdh15 mutants. 

 

USHER1C Ush1c  Hair bundle development and 

functioning 

Synaptic transmission 

 

Severe vestibular dysfunction with 

delayed motor skills.  

 

Severe vestibular 

dysfunction in mouse model 

of USH1C Waltzer: 

hyperactivity, head-tossing, 

circling behavior and 

disorganized stereocilia 

bundles. 

 

Severe vestibular 

dysfunction in zebrafish 

model of USH1C: circling 

swimming behavior, 

disorganized stereocilia 

bundles. 

[84, 91-93] 

 

 

USHER1G sans  Hair bundle development and 

functioning 

 

Severe vestibular dysfunction with 

delayed motor skills. 

Atypical USH1 has also been 

associated with mutations in 

the SANS gene (USH1G). 

 [84] 

 

 

USHER Type 2  ADGRV1 

VLGR1 

GPR98 

USH2A 

WHRN 

 Hair bundle development and 

functioning 

 

Variable vestibular function. Whrnwi mice and Whrnneo 

mice have severe to 

profound loss of linear 

vestibular evoked potential 

responses and shorter 

stereocilia. 

[94, 95] 

USHER Type 3 CLRN1 

HARS 

 Hair bundle development and 

functioning 

Variable vestibular function.  Progressive vestibular loss in 

Clrn1-/- mice. 

[96, 97] 

 

Pendred SLC26A4 

EPHA2 

EPHB2 

 

  Dysmorphic vestibular anatomy/ 

large vestibular aqueduct.  

Mild vestibular dysfunction 

primarly in saccul.  

Mouse model Slc26a4Δ/Δ has 

an enlarged vestibular 

aqueduct and a Mondini-like 

dysplasia of the cochlea. 

Mouse model Ephb2: 

abnormal otoconia, dysplasia 

of endolymphatic fluid 

space, absence of 

endolymphatic duct. 

[98-101] 

 

 

DRTA ATP6V1B1 

ATP6V0A4 

 

 Absent endocochlear potential Large vestibular aqueduct. 

Vestibular dysfunction can be 

observed.  

 [102] 

 

 

https://omim.org/entry/608400
https://omim.org/entry/607928
https://www.sciencedirect.com/topics/neuroscience/vestibular-evoked-potential


 

 

BOR EYA1  

SIX1 

SIX5 

 Inner ear development Dysmorphic vestibular anatomy/ 

large vestibular aqueduct.  

Mouse model: head bobbing, 

vestibular dysmorphy. 

Reduced number of hair 

cells. 

 

Zebrafish model: imbalanced 

and circling swimming 

behavior, small otoliths, 

absent hair cells in cristae, 

reduced number of hair cells 

in maculae 

[103-108] 

 

 

22q11 deletion 

syndrome 

   Frequent vestibular dysfunction. 

Frequent inner ear malformations 

particularly the lateral semi-

circular canal .  

 [109, 110] 

 

 

CHARGE Chd7 

Sema3e 

 Inner ear development Severe vestibular dysfunction with 

frequent delayed motor skills. 

Semi-circular canal hypoplasia or 

agenesis.  

Vestibulocochlear nerve 

hypoplasia. 

Severe vestibular 

dysfunction in mouse model: 

head shaking and circling 

behavior. Inner ear 

malformation. 

[111-114] 
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