Discerning the putative U and V chromosomes of *Saccharina japonica* (Phaeophyta) by cytogenetic mapping of sex-linked molecular markers

Yu Du^{1, #}, Peng-Fei Liu^{1, #}, Zhi Li¹, Qian Zheng¹, Yan-Hui Bi¹, and Zhi-Gang Zhou^{2, *}

¹Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai 201306, China

²International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China

[#]These authors contributed equally to this work.

*Author for correspondence: e-mail zgzhou@shou.edu.cn. Tel: 0086-21-61900424; Fax: 0086-21-61900405

Running title: Discerning the kelp sex chromosomes U and V

Primer	Sequence (from 5' to 3')	Product size (bp)	Annealing	Reference			
			temperature (°C)				
DNA cloning for female gametophyte markers							
f170-F	TGACCGCGCTGGTCTTGAGGATA	619	54	This study			
f170-R	CACCTGATACAGCACCCCA						
f58-F1	CAGACCATTATCTGATGTAAACAATGACAG	1105	56	Zhang et al. 2018			
f58-R1	TTTGGGCCTTGAGGGATC						
f58-F2	TACCTGGTATTTGATACCATCTGAC	505	62	This study			
f58-R2	TTTGGGCCTTGAGGGATC						
DNA clonii	ng for male gametophyte markers						
m1840-F	AGGACGGGAACCACTACGG	436	55	This study			
m1840-R	CTGGCGTTTCCACTATGC						
m16-F	TACGATTCAGGCAACACACC	472	56	Zhang et al. 2018			
m16-R	CTTCCAAACCTTCCCTAGCA						
qRT-PCR							
Qg1-F	CATTGGCGAGGTATAAGAGC	128	55	This study			
Qg1-R	GGGAAGGACGAGAACAGAT						
Qg2-F	GACGAGGCGAAGGCAAAG	91	55	This study			
Qg2-R	CGTTCGGCGTAACAATGAC						
Qg3-F	GGGATGACGCAAGAAACG	186	55	This study			
Qg3-R	CAGCGGAAGCGATGTGAG						
Qg4-F	ATGCCGAACATAACATCCT	181	55	This study			
Qg4-R	GCTGCTCCATTTCCTCTTG						
Q18S-F	TCGGACGGTTTTGTGGTG	191	55	This study			
Q18S-R	CCTTCCTTGGATGTGGTAGCC						
DNA clonii	ng for annotated genes						
g1-F1	ATGCCAGGAGAGCCTCAACC	593 for female; 571 for male	60	This study			
g1-R1	CTGGATTTCGATGTCTGCTG						
g1-F2	TGATCCTCAACCTGACCCAAG	590 for female; 568 for male	60	This study			
g1-R2	ACCCATCACAAAACACAC						

Supplementary TABLE 1. Nucleotide sequence of primers employed in the present study.

g2-F	ATGGCACAGCATAGCGCCAT	258 for female; 254 for male	58	This study
g2-R	CTACACCACCGCTCTCACC			
g3-F1	AGCAACAGCAACAGCCTTACCA	782 for female; 771 for male	60	This study
g3-R1	TTCTTGCGTCATCCCTCTT			
g3-F2	AAGAGGGATGACGCAAGAA	633 for female; 663 for male	60	This study
g3-R2	GTTGCCGGTTTCGAGAATG			
g4-F	ATGCCGAACATAACATCCTT	252 for female; Not available	58	This study
g4-R	TTAGTAACACATGAATCCTGA	for male		

Supplementary TABLE 2. Blast searching results of the four markers used in the present study against the availably assembled genome of *Saccharina japonica*.

Genome	Sex-linked genes or markers			
source	SJ-f_000170	MSj68-58-2	SJ-13_001840 ^b	MSj68-16-2 ^b
Ye et al.	NA ^a	Only matched to Scaffold220	Only matched to Scaffold3074	Only matched to Scaffold1744
2015		(444,739 bp) with 52%	(24,639 bp) with 100%	(87,786 bp) with 100%
		(573/1,105 bp) sequence identity.	sequence identity (633 bp)	sequence identity (472 bp)
Shao et al.	Only matched to Contig4871	Only matched to Contig3481	Only matched to Contig4772	Only matched to Contig2278
2019	(6,269 bp) with 100%	(188,527 bp) with 100% sequence	(10,276 bp) with 100%	(161,232 bp) with 100%
	sequence identity (639 bp)	identity (1,105 bp)	sequence identity (633 bp)	sequence identity (472 bp)
Fan et al.	NA ^a	Thirty pseudo-chromosomes were	No pseudo-chromosome was	No pseudo-chromosome was
2020		matched, but the sequence	matched, except Chr0 matched	matched, except Chr0 matched
		identities were <50%	with 100% sequence identity	with 100% sequence identity
			(633 bp)	(472 bp)

^aNA, not available.

^bChr0, an artificial chromosome constructed by scaffolds that were not linked to other genetic linkages (Fan et al. 2020).

	BAC669-A11	BAC652-P6
Length (bp)	110,085	104,111
Bases	1,600,988,320	1,500,167,532
Min	51	55
Max	55,664	55,664
Average	9,463.89	8,722.63
N50	10,464	9,685
C+G content (%)	51.53	50.43
Ns%	0	0

Supplementary TABLE 3. Summary of the original sequencing data of two BAC clones.

BAC clone	Assembled gametophyte genome of <i>S</i> .		Assembled sporophyte genome of <i>S</i> .		Assembled gametophyte genome of <i>S</i> .	
	<i>japonica</i> by Ye et al. (2015)		<i>japonica</i> by Shao et al. (2019)		japonica by Fan et al. (2020)	
BAC669-A11	matched genome	% of coverage ^a	matched genome	% of coverage ^a	matched	% of coverage ^a
	scaffolds		contigs		pseudo-chromosomes	
	Scaffold1221	17.88	Contig1705	20.58	Chr0	53.26
	Scaffold1777	14.73	Contig676	18.86	Chr6	31.55
	Scaffold408	13.30	Contig2317	17.70	Chr2	27.11
	Scaffold1524	11.42	Contig408	17.39	Chr4	23.09
	Scaffold70	11.32	Contig416	15.47	Chr1	20.63
	Scaffold285	11.10	Contig1544	15.13	Chr14	20.19
	Scaffold2802	11.02	Contig195	14.46	Chr13	19.56
	Scaffold378	10.49	Contig586	12.57	Chr16	19.25
	Scaffold765	10.40	Contig611	12.13	Chr15	18.98
	Scaffold351	10.11	Contig584	11.96	Chr30	16.78
			Contig1816	11.76	Chr7	16.63
			Contig327	11.41	Chr18	14.63
			Contig856	11.29		
			Contig1669	11.21		
			Contig1183	11.19		
			Contig1831	11.15		
			Contig310	10.96		
			Contig3284	10.68		
			Contig296	10.18		
			Contig550	10.13		
			Contig3385	10.11		
			Contig331	10.07		
	Overall coverage ^b	55.69	Overall coverage ^b	82.59	Overall coverage ^b	94.13

Supplementary TABLE 4. Comparison between the sequenced inserts of two screened BAC clones and the assembled genome of *Saccharina japonica*.

BAC652-P6	matched genome scaffolds	% of coverage ^a	matched genome contigs	% of coverage ^a	matched pseudo-chromosomes	% of coverage ^a
	Scaffold513	11.09	Contig3481	79.78	Chr0	32.95
	Scaffold254	10.26	Contig676	13.72	Chr12	26.93
	Scaffold74	10.16	Contig1040	10.40	Chr6	26.03
			Contig1864	10.33	Chr11	22.68
			Contig1277	10.12	Chr2	18.40
					Chr14	17.83
					Chr9	15.17
					Chr21	13.88
					Chr20	10.68
	Overall coverage ^b	25.81	Overall coverage ^b	92.56	Overall coverage ^b	98.76

^aOnly those scaffolds, contigs, or pseudo-chromosomes with more than 10% coverage of the BAC clones were taken into consideration for calculation.

^bOverall coverage was also directly generated from NCBI BlastX online.

Start	End	Repeat	Туре
BAC669-4	A11 (110,08	5 nt)	
2,128	2,168	$+(CAG)_{13}$	STR
2,629	2,647	$+(G)_{19}$	STR
2,879	2,901	$+ (ACA)_7$	STR
4,453	4,478	$+ (GTAC)_6$	STR
6,334	6,391	$+ (AGCGCTC)_8$	STR
10,501	10,540	$+(CGGCC)_8$	STR
15,785	15,867	$+ (ATGT)_{20}$	STR
23,667	23,726	$+(T)_{60}$	STR
23,727	23,748	+ (TTTG) ₅	STR
29,389	29,428	$+ (GTAC)_{10}$	STR
30.567	30,606	$+ (GTAC)_{10}$	STR
30.885	30,938	+ (TGTA) ₁₃	STR
31.346	31.383	$+ (GCA)_{12}$	STR
32.338	32.393	$+ (ATA)_{18}$	STR
32.656	32,674	$+(C)_{19}$	STR
33,916	33.947	+ (TGTATG) ₅	STR
34.629	34,692	$+ (AACAAC)_{10}$	STR
36.101	36.149	+ (GGAACCTCC) ₅	STR
37.121	37.156	+ (CGTACT) ₆	STR
37.836	37,869	+ (TATG) ₈	STR
38,383	38,405	$+(T)_{23}$	STR
39,048	39,111	$+ (GCA)_{21}$	STR
39,112	39,159	$+ (GGCGGC)_8$	STR
40,019	40,041	$+(TAAT)_5$	STR
41,044	41,072	+ (TAATTTT) ₄	STR
49,589	49,632	+ (GTAC) ₁₁	STR
55,574	55,601	+ (CTCC) ₇	STR
56,282	56,306	$+ (ATTG)_6$	STR
57,869	57,895	$+(T)_{27}$	STR
58,985	59,012	+ (TGC) ₉	STR
59,026	59,153	+ (CGAGTA) ₂₁	STR
59,999	60,064	+ (AAC) ₂₂	STR
62,127	62,251	$+ (GCA)_{41}$	STR
62,254	62,345	$+ (CGG)_{30}$	STR
62,555	62,612	$+ (TGC)_{18}$	STR
62,789	62,841	+ (CGCTTCG) ₇	STR
63,097	63,141	$+ (AGCGCGA)_5$	STR
63,374	63,420	$+ (GTATGT)_8$	STR
74,909	74,996	+ (TACTGC) ₁₄	STR
77,103	77,141	$+ (CAG)_{13}$	STR
78,240	78,283	$+ (GT)_{22}$	STR
79,291	79,322	+ (TTACG) ₆	STR
87,269	87,307	$+ (GTT)_{13}$	STR
88,706	88,737	+ (TTACG) ₆	STR
92,644	92,670	+ (GTTTT) ₅	STR
106,940	106,968	$+ (CACAG)_6$	STR

Supplementary TABLE 5. Summary of repetitive elements in the sequences of the two BAC clones as predicted online by the RepeatMasker website.

109,961	109,998	$+ (GCA)_{12}$	STR
8,225	8,282	- Gypsy-55_LMi-I	LTR/Gypsy
29,022	29,077	-FGypsy	LTR/Gypsy
65,680	68,671	-Gypsy	LTR/Gypsy
79,761	81,450	– Gypsy	LTR/Gypsy
83,036	83,155	- Gypsy-8 AA-I	LTR/Gypsy
83,223	83,574	-Gypsy-10 ES-I	LTR/Gypsy
83,922	84,174	-Gypsy-10 ES-I	LTR/Gypsy
84,430	84,761	-Gypsy-10 ES-I	LTR/Gypsy
93,169	93,712	-Gypsy	LTR/Gypsy
94,122	94,367	-Gypsy	LTR/Gypsy
96,477	97,341	-Gypsy	LTR/Gypsy
24,654	25,053	– Copia-1 ES	LTR/Copia
25,675	27,129	– Copia-2 ES	LTR/Copia
44,775	44,832	-Copia-2 ES-I	LTR/Copia
45,207	46,218	– Copia ES	LTR/Copia
46,842	48,219	– Copia ES	LTR/Copia
71,243	72,741	– Copia ES	LTR/Copia
73,300	74.071	– Copia-2 ES-I	LTR/Copia
8,909	8,995	– I-Jockey-5 DPer	LINE/I-Jockey
21,758	22,478	– FRTE pol	LINE/RTE-BovB
31,580	31,618	– I-Jockey-1 DPer	LINE/I-Jockey
39,269	39,532	– CR1	LINE/CR1
61,909	62,027	– L1-Tx1	LINE/L1
69,730	70,025	- I-Jockey-2_DPer	LINE/I-Jockey
86,099	86,169	– L2-Tx2	LINE/L2
BAC652-P	96 (104,111 n	nt)	
2,352	2,478	$+(CACCAAG)_{10}$	STR
2,619	2,691	+ (TGCTTGG) ₁₀	STR
3,369	3,445	$+ (CAGAAG)_{16}$	STR
13,403	13,429	$+ (AT)_{18}$	STR
17,300	17,322	$+ (G)_{23}$	STR
18,723	18,760	$+ (TGC)_{12}$	STR
19,964	20,000	+ (CTGTG) ₇	STR
22,029	22,058	$+ (GTT)_{10}$	STR
27,691	27,727	$+(CAG)_{13}$	STR
27,959	28,007	$+ (AGC)_{19}$	STR
29,097	29,137	$+ (CAG)_{13}$	SIK
29,437	29,498	$+ (AC)_{21}$	SIK STD
32,510	32,344	$+ (ACA)_{11}$ + (TTGTCTT).	STR
33,152	33,052	$+ (TGTT)_{6}$	STR
38.231	38.305	$+ (AGC)_{24}$	STR
38.470	38,501	$+ (GGGTT)_{6}$	STR
41,386	41,444	$+(CTG)_{19}$	STR
42,161	42,188	$+ (GAAAA)_{6}$	STR
42,209	42,366	+ (CGCTG) ₃₁	STR
46,523	46,572	$+ (AACCG)_{10}$	STR

46,661	46,862	+ (CACCG) ₄₀	STR
47,377	47,433	$+(CCGCAGC)_8$	STR
47,731	47,803	+ (TATTTAT) ₁₀	STR
48,557	48,608	$+ (GGTTC)_{10}$	STR
49,096	49,142	+ (TGTACTC) ₇	STR
51,553	51,596	$+ (CTG)_{14}$	STR
59,377	59,395	$+ (A)_{19}$	STR
63,499	63,542	+ (CCGTC) ₉	STR
64,041	64,166	$+ (CCCA)_{31}$	STR
68,498	68,541	$+ (ACA)_4$	STR
74,404	74,439	$+ (CTA)_{12}$	STR
76,748	76,771	$+ (CTG)_8$	STR
76,977	77,020	$+ (CTA)_{14}$	STR
77,233	77,271	$+ (CTG)_{13}$	STR
79,083	79,128	+ (CCCTGA) ₇	STR
79,885	79,942	+ (TGGT) ₁₄	STR
80,063	80,138	$+ (GGTG)_{19}$	STR
80,940	80,957	$+(T)_{18}$	STR
81,515	81,534	$+ (GCT)_5$	STR
88,314	88,357	$+ (GCT)_{14}$	STR
88,760	88,816	$+ (GCT)_{19}$	STR
89,507	89,547	+ (TACGAG) ₇	STR
90,436	90,454	$+ (G)_{19}$	STR
91,447	91,483	$+ (GCT)_{12}$	STR
92,248	92,272	$+(GCT)_8$	STR
93,862	93,887	$+ (GCA)_8$	STR LTD (DD1/1
24,635	24,804	– ERV1	LTR/ERVI
89,620	89,677	– <i>Gypsy</i> -55_LMi-I	LTR/Gypsy
91,713	91,806	– <i>Gypsy</i> -1_AC-I	LTR/Gypsy
95,875	96,052	– <i>Gypsy</i> -3_ES-I	LTR/Gypsy
96,456	98,992	– Gypsy	LTR/ <i>Gypsy</i>
99,245	100,946	– Gyps	LTR/Gypsy
101,139	101,939	– Gypsy	LTR/Gypsy
102,185	102,655	– Gypsy-5_ES-I	LTR/Gypsy
3,577	3,634	– L1-Tx1-3_PM	LINE/L1
32,367	32,431	– RT1	LINE/RT1
34,382	34,938	- RTE-BovB	LINE/RTE-BovB
40,702	40,797	– RTAg4	LINE/R1
53,325	53,403	– L1-Tx1-3_PM	LINE/L1
63,918	64,039	– I-Jockey-3_DGri	LINE/I-Jockey-3
78,536	78,770	– RTAg4	LINE/R1
93,198	93,289	– Ag-Jock-1	LINE/Ag-Jock-1
93,623	93,697	– I-Jockev-3 DGri	LINE/I-Jockey-3
	,		L

STR: short tandem repeat LTR: long terminal repeat LINE: long interspersed nuclear element

	Proportion of LTR	Proportion of LINE	Proportion of coding
	elements (Bases per 1 kb)	elements (Bases per 1 kb)	sequence (%)
BAC669-A11	116.794	30.006	1.301
BAC652-P6	57.451	12.924	0.243
Mean	87.954	21.704	0.783

Supplementary TABLE 6. Proportion of repetitive elements and coding sequence in the sequenced BAC clones.

Supplementary TABLE 7. Nucleotide and deduced amino-acid sequences of the annotated genes from the two BAC clones of *Saccharina japonica* female gametophytes.

Annotated gene	The closest Blast match to the assembled	The closest Blast match to the assembled	Linkage	Source	DNA sequence ^a	Locus ID	cDNA sequence ^a	Deduced amino-acid sequence ^b
	genome by	genome by						
	Ye et al.	Shao et al.						
<u> </u>	(2015)	(2019)	F 1	DACK		016000		MDTUGE
Gene I	Scaffold2/46	Contig48/1	Female	BAC66	atgccaggagagcctcaacctgatcctcaacctgaccc	$SJ-f_000$	atgeceacegtgggg	MPTVGE
				9-A11	aagccaaccaggtcaacctccacgaactccagtgccga	080	gaaggacgagaacag	GREQMD
					tgcccaccgtgggggaaggacgagaacagatggatgt		atggatgtaatgtcga	VMSKLL
					aatgtcgaggttgctgaaagaccgcattctactgctggg		ggttgctgaaagaccg	KDRILLL
							callclactgctgggac	GQDVND
					totoo operation of the second		aagaigilaacgacga	CDVATVC
							ggicggaaaiiicaiic	
							egigigaegiigeeae	FUMAAS MCAELI
					acagiicagiiiiicceaagiiiccecaigggigicggigiig		agicigilicggcalgg	GACSPC
					<u>aangeeangeengegengegengeangeengengengengengengengengengengengenge</u>		cagegicialgggage	VDKSI DN
					acattaccacaatctatttcaacataacaacatctataaa		gaageeeegageag	SRIMIHO
							gaageeeeggeaage	PLGGAA
					agteriningingggageaggaageeeeggeaagegea		tteecquataatgatte	GOAADIE
					agatagagcagctagtcagcagcagcagcagcatcagaatc		atcaaccactagatag	IO
							ageogetogteagoe	IQ
					cctaa		ageagacategaaate	
					collui		cag	
			Male	PCR amplifi cation	ggctataaacgcgaaacgcaacttgcgtacagacggaa aggaggcgtgttgttgggggatccgatggaccgggacct gtgtgcctgtgaccgctgccgcaagaaagtgctgtctca	TRINIT Y_DN17 336_c0_ g3 ^d	atgaagtttgccgttct atatttgttctttgcgtac gtggtgtcgcaaacttt	MKFAVL YLFFAYV VSQTFAF A PA PPSS
					caemigeeeageigeegeigeaaigaagingeegnei	55	izegnizegeeigeg	

WRAASR cctccttcctcttggag LRSRTSV agcagcgagtcgcct LTMPGEP gcgcagtcgcacgag QPDPQPD tgttctgacgatgccag PSQPGQP gagagcctcaacctga PRTPVPM tcctcaacctgaccca PTVGEG agccaaccaggtcaa REQMDV cctccacgaactccag MSRLLK tgccgatgcccaccgt DRILLLG gggggaaggacgag **QDVNDE** aacagatggatgtaat gtcgaggttgctgaaa VGNVLV AQLLYL gaccgcattctactgct ANDDPE gggacaagatgttaac **KDITLYI** gacgaggtcggaaat gtcctggtcgctcagct NSPGGSV SAGLAIY cttatacctcgccaatg DTMQFIP acgaccccgaaaaag **CDVATVC** atatcacgctctacatc FGMAAS aactctcccggcggct cagtgtcggcgggcct MGAFLL GAGSPG ggcgatatacgatact KRKSLPN atgcagttcattccgtg SRIMIHQ tgacgttgccacagtct PLGGAA gtttcggcatggcagc GQAADIE gtctatgggagccttttt IQAKEIL gttgggagcaggaag FTKRLLN ccccggcaagcgcaa GYMSEY gtctctcccgaattccc TEQPVG gaataatgattcatcaa ccgctgggtggagcg **KIEEDTD**

atatttgttctttgcgtacgtggtgtcgcaaacttttgcgttt gcgcctgcgcctccttcctcttggagagcagcgagtcgc ctgcgcagtcgcacgagtgttctgacgatgccaggaga gcctcaacctgatcctcaacctgacccaagccaaccag gtcaacctccacgaactccagtgccgatgcccaccgtg ggggaaggacgagaacagatggatgtaatgtcgaggtt gctgaaagaccgcattctactgctgggacaagatgttaacgacgaggtcggaaatgtcctggtcgctcagctcttatacctcgccaatgacgaccccgaaaaagatatcacgctcta catcaactctcccggcggctcagtgtcggcgggcctgg tccaagtttccccatgggtgtcggtgttgaattgtcatgttc ttgcgttttgatgactgaaattccgtctcatttccctttcattc <u>cgtgtgacgttgccacag</u>tctgtttcggcatggcagcgtc tatgggagcctttttgttgggagcaggaagccccggcaa gcgcaagtctctcccgaattcccgaataatgattcatcaa ccgctgggtggagcggctggtcaggcagcagacatcg aaatccaggcgaaggaaattttgttcacgaaacgacttct taatggctacatgtcggagtacacggagcagccggttg gcaagatagaggaagataccgatcgagatttcttcatga ctccacacgaggcgctggagtatgggctgatagatgaagttatcaagaccaagaccagccatctcccgctccccag atgcccttccttgagtgagggcctctttcaaggcttttgat cctctgacgcaattactcaggcttgaaaattatggaattcccacgatattttatttcgatacaacgtttgacttgtttttttagcaggatagtgtgtgcgacaaccttgcctaataaagtttgttg acgggaaggaggtttccccgatcactcgttgtggtacaacgttcacagatgcttccagtacctggaagttaagtaaacg tatgttggagagaaaccctgcaagtacttcgtatgctcgcagtatttcgggtttgtatgctggggatacttccctactccca gtgttttcggggtccgatactgaaactctctgtacttgagt

				attttagagtggtgtactgcgggtatttcaattgctggcag		gctggtcaggcagca	RDFFMTP
				tattttgtccgttgttttgctagtattgcgagtacttgcagttt		gacatcgaaatccagg	HEALEY
				caaaatactctctcaatagcgcagtatactcggaatgtgg		cgaaggaaattttgttc	GLIDEVI
				agcatgcttcgaccatctgcgcaccgtttcgatattttcat		acgaaacgacttettaa	KTKTSHL
				ccttttgtttttgcagacaggtggtcccacgagtgggagtt		tggctacatgtcggag	PLPQMPF
				ggagcaaattacttccggggaggggggaaaggagtac		tacacggagcagccg	LE
				tttgagtacggacagtatttcagcaatatttacggcgagta		gttggcaagatagagg	
				gtcgcagtatttacgtggtttaatacttctgattactgcgga		aagataccgatcgaga	
				gtactgcaggtatttcggatttgtactcggggttctgtattg		tttetteatgaeteeaca	
				ctcatactcccagaactccaagtatttgggtgagcagtac		cgaggcgctggagtat	
				tgctcatctcccagagtttgcagtatttagaccgtcagtac		gggctgatagatgaag	
				tgtaaaaccatccgtactcaagagtaatggaatgtaatca		ttatcaagaccaagac	
				atacttggagtatactcggagtataaagtacaagggtgc		cagccatctcccgctc	
				gctccgcgggcagctattcgccgccgccgctcttgctc		ccccagatgcccttcct	
				aaggaagcggatagaacaaagtgtgaagcagacagag		tgagtga	
				ggcagaggacgctcatgatgtcgtgcaatgggagactt			
				gcaaatgccaagcgctgtgttgcaggataaactatgccg			
				ggccttctcgtgatgttgtgcgcagaaggttaaaaa			
2583	Contig1381	Female	BAC66	atggcacagcatagcgccatcgccttgaacgtcttgcag	SJ09518 ^a	atggcacagcatagc	MAQHSA
			9-A11	ggaaccggcatcgtcgccatcgagaacggataccttatt		gccatcgccttgaacg	IALNVLQ
				cgcgacgaggcgaaggcaaagggcgccaagtatcag		tcttgcagggaaccgg	GTGIVAI
				ccgggtggagtcgggcaggtgataaagcccaagtcttg		catcgtcgccatcgag	ENGYLIR
				ggtcattgttacgccgaacgaggaagagggggggtaag		aacggataccttattcg	DEAKAK
				gtcgtgaagacgctcaagaagggtgcgaggtcgcagg		cgacgaggcgaagg	GAKYQP
				atttctgcgcgcaggtgagagcggtggtgtag		caaagggcgccaagt	GGVGQV
						atcagccgggtggagt	IKPKSWV
						cgggcaggtgataaa	IVTPNEE
						gcccaagtcttgggtc	EGRKVV

attgttacgccgaacg KTLKKG aggaagaggggggga ARSQDF aggtcgtgaagacgct CAQ

Gene 2 Scaffold2

							caagaagggtgcgag gtcgcaggatttctgc gcgcagg	
			Male	PCR	atgaacatagatggcacagcatagcgccatgtgctggc	i1 LQ S	atggcacagcatagc	MAQHSA
				amplifi	ggcgaagggaaccggcatcgtcgccatcgaaaacgga	ja_c5870	gccatgtgctggcggc	MCWRRR
				cation	taccttattcgcgacgaggcgaaggcaaagggcgcca	7/f1p6/1	gaagggaaccggcat	EPASSPS
					agcatcagccgggtggagtcgggcaggtgataaagcc	853 m.92	cgtcgccatcgaaaac	KTDTLFA
					caagtettgggtcategttacgccgaacgaggaagagg	33 ^d	ggataccttattcgcga	TRRRQR
					ggcgtaagggcgtgaagacgctcaagaagggtgcga		cgaggcgaaggcaaa	APSISRV
					ggtcgcaggatttaagcgcgcaggtgagagcggtggt		gggcgccaagcatca	ESGR
					gtag		gccgggtggagtcgg	
							gcaggtga	
Gene 3	Scaffold942	Contig1412	Female	BAC66	agcaacagcaacagccttaccaacgccattagggggct	SJ19485 ^a	atggagaagctggtca	MEKLVN
				9-A11	gaggaagtttgacggaagagacccgagtcactttcggg		acaccagcatgaaatc	TSMKSG
					attggcataagaaattcgcagttgtcctcggcgtcacccg		gggtcaagacccgga	QDPDDFF
					acgagatatcgcaagcttgatcaacgggcgaatccgac		cgacttcttcatggaaa	MEKTLA
					catccaatacggcaagcacgggaatcccccttacgctc		agaccettgecegege	RAELTR
					cctggtaccctcgagcaggacaccgcgtcatttgatagg		tgagetcaccaggatg	MGEPITD
					gccaatgaggacctatacgccattctgttcctgctaacag		ggcgaacccatcacc	RRFKDIC
					aaaagccagcctcactcctcgtgcttaagcacgaaaacc		gaccgccggtttaaag	VQGFTS
					actctggtacgagcggggacggacaaaaggccctgca		acatetgegteeaagg	DYRDIKL
					agagettgtegegaaatacaacaaggteaeggaegag		attcacatccgattaca	MMYRDP
					gtcgtacgagctacgatggagaagctggtcaacaccag		gggacatcaaactaat	SFDIDQM
					catgaaatcgggtcaagacccggacgacttcttcatgga		gatgtaccgtgaccett	QSTMRH
					aaagaccettgeeegetgageteaceaggatggge		cettigacategateag	
					gaacccatcaccgaccgccggtttaaagacatctgcgtc		atgcaaagcaccatgc	KSSGVK
					caaggattcacatccgattacagggacatcaaactaatg		gacacctgtatcttgac	GHAGKG
					alglaceglgacecileciligacalegalcagalgeaaa		galcicicccgcagca	VANIAE
					generalgegneaceignateitgaegneteiteceegen		geggegicaagggaa	ASICDI
					gcagcggcgicaagggaacgatagccggggcgcggtg		cgalageegggegeg	CUKEUH
					iagecalgacagcagaagegicaaceigegactaetge		gigiagecalgacage	VAKKC M

ggaaaggaggacaccaagctcgcagatgctggcaaa agagggatgacgcaagaaacgacaagaagccgaaga acaaacaaacttccggcggcagagcaggagctaaggg aaccgctggacagaagtggtgttccatccataagactac ctcgcacagtgacgagggctgctacgagcagggtgccccacgtccggatcgtaagggtgctcacatcgcttccgct gtactatcctctggctctcctcctgccaacgatgatgaga aaccattcattcctttcgacgatgattttgcggagggattcgcattttcaggacgaacgacgaaaactgacgaagggat cagcggcgcatcggaccactttgtggatgacaagttgatcccaggcctgcgacaaggcatgacggagtaccaaacg ctcgaccagccgaagcccattgagatcgctggtaacatgaagatattcgcgacggcaacgggcaaaatctgcgga cacat cat caac caat cag g t cag c c t a t c c c t g t t c g c atctctgtcatgatcgtccctgggatgggacgccatctcttc tcctctgcacgggcaatgaggtcaggggtaagcaccatt ctcgaaaccggcaacccccacatccagttcgacagcaa gacttctctgatgttgaaccaacaccagaaggacgcgg gtatgtgctcgtttgacgtgtcactgcgcgccctggatgg cgtgacctatggaagcaccaagacaccatcaacaccttc ggtagccctcgcggcccaagtaagtgccgacacctgg cacaggcgactgggacacatgaacccccgcaacatgg agcttcttcgtaagattgacggcaacggtatggaatacaccggcacggtgtcaggctgtgacatctgcgcagtgggca agagcacgcaaaaagcgcacccgaagcaagacaaac a caagactga cagacca atgga attggttta taccgacctcatgggacctatcacgccagcagcaaggggggggta caagtacgtcagcaagtttactgatgacttctctcgtaagaaggaggtctttctcctcaagtccaagacagaagcaatca actcgctccacctctacaacatgacagtggctgttcctct

QKRDDA agaagcgtcaacctgc **RNDKKP** gactactgcggaaag **KNKQTS** gagggacaccaagct GGRAGA cgcagatgctggcaa KGTAGQ aagagggatgacgca **KWCSIH** agaaacgacaagaag **KTTSHSD** ccgaagaacaaacaa EGCYEQ acttccggcggcaga GAPRPD gcaggagctaaggga RKGAHI accgctggacagaag ASAVLSS tggtgttccatccataa **GSPPAND** gactacctcgcacagt DEKPFIP gacgagggctgctac FDDDFAE gagcagggtgcccca GFAFSGR cgtccggatcgtaagg TTKTDE gtgctcacatcgcttcc GISVSNP gctgtactatcctctgg GEFTML ctctcctcctgccaacg **VDSGAS** atgatgagaaaccatt DHFVDD cattcctttcgacgatg KLIPGLR attttgcggagggattc **QGMTEY** gcattttcaggacgaa QTLDQP cgacgaaaactgacg KPIEIAG aagggatctcagtatct **NMKIFAT** aacccgggcgagttc ATGKICG accatgctggtggaca HIINQSG gcggcgcatcggacc APRGAA actttgtggatgacaag HN ttgatcccaggcctgc gacaaggcatgacgg agtaccaaacgctcga

gggactgcgcattcaacggttgaggtgcgataagggag ccagccgaagcccatt gcgagtacacttccaaagaattcaagcagctctgcgtcg gagatcgctggtaaca act ctgg cat caccatgg agt a cacct ctctgg cctg cctgaagatattcgcgac ccgccttggggtgggccgaggaaccccgcaaggacc ggcaacgggcaaaat cgcaacggtctagcggcacacccaagcgagcctcggg ctgcggacacatcatc cttggtggagagggaaccctgcgcggtctggcga aaccaatcaggagctc acctgtcgccgtaa caaggggcgcggcc cacaactaa PCR $agcaacagcaacagccttaccaacgccattagggggct \quad i3_LQ_S$ atggagaagctagtca ja_c2114 amplifi gaggaagtttgacggaagagacccgagtcactttcggg acaccagcatgaaac 6/f1p0/3 cation attggcataagaaattcgcagttgtcctcggcgtcacccg cgggtcaagacccgg 254|m.84 acgagatatcgcaagcttgatcaacgggcgaatccgacacgacttcttcatggag 17^d catccaatacggcaagcacgggaatcccccttacgctcaagacccttgcccgcg cctggtaccctcgagcaggacaccgcgtcatttgatagg ctgagctcgcgaagat gccaatgaggacctagttcctgctaacagaaaagccag gggcgaacccatcac cctcactcctcgtgcttaagcacgaaaaccactctggtaccgaccgccggtttaag gagcggggacggacaaaaggccctgcaagagcttgtc gacatatgtgtccaag gcgaaatacaacaaggtcacggacgaggtcgtacgag gatccacatccgattac ctacgatggagaagctagtcaacaccagcatgaaaccg agagacatcaaactaa tgatgtaccgtgaccct ggtcaagacccggacgacttcttcatggagaagaccctt gcccgcgctgagctcgcgaagatgggcgaacccatca tccttagacatcgatca ccgaccgccggtttaaggacatatgtgtccaaggatcca gatgcaaagcaccatg catccgattacagagacatcaaactaatgatgtaccgtgacgacatttgtaccttga cccttccttagacatcgatcagatgcaaagcaccatgcg cgatctctcccgcagc a catttgtaccttgacgatctctcccgcagcagaggcgtcagaggcgtcaaagga aaaggaacgatagccgggcgcggtgtagctatgacag acgatagccgggcgc cggaagcatcaacctgcgactactgcggaaaggaggg ggtgtagctatgacag cggaagcatcaacctg acatcaagctcgcagatgctggcaaaagaggggtgac gcaagaaccgacgacaagaagccgaagaacaagcaa cgactactgcggaaa acttcgggcggcaacgcaggagctaagggagccgctg ggagggacatcaagc gacagaagtggtgttccgtccacaaaactacctcacaca tcgcagatgctggcaa

MEKLVN

TSMKPG

QDPDDFF

MEKTLA

RAELAK

MGEPITD

RRFKDIC

VQGSTS

DYRDIKL

MMYRDP

SLDIDQM

QSTMRH

LYLDDLS

GTIAGRG

VAMTAE

ASTCDY

CGKEGH

QARRCW

QKRGDA

RTDDKK

PKNKQT

SGGNAG

RSRGVK

Male

ggacgaacgacggacaatgacgaagggatatcagtat ccaacccgggcgagttcaccatgctggtggacagcgg cgcatcggaccactttgtggatgacaagttgatcccagg cctgcggcaaggcatgacggagtaccaaacgctcgac cagccgaagtccattgagatcgctggtaacatgaaggtattcgcgacggcaacgggaaaaatctacggacacatcat caacaaatcaggagctccaaggggcgcggcccacaac taat cag cct at ccct gt c g cat ct ct g t c at g at c g t c c ctgggatgggacgccatctcttctcctctgcacgggcaat gaggtcaggggtaagcaccattctcgaaaccggcaacc cccacatccagttcgacagcaagacttctctgatgttgaaccaacaccagaaggacgcgggtatgtgctcgtttgacgt gtcactgcgcgccctggatggcgtgacctatggaagca ccaagacaccatcaacaccttcggtagccctcgcggcc caagtaagtgccgacacctggcacaggcgactgggacacatgaacccccgcaacatggagcttcttcgtaagattg acggcaacggtatggaatacaccggcacggtgtcagg ctgtgacatctgcgcagtgggcaagagcacgcaaaaagcgcacccgaagcaagacaaaacacaagactgacaga ccaatggaattggtttataccgacctcatgggacctatcacgccagcagcaaggggggggggctacaagtacgtcagcaa gtttactgatgacttctctcgtaagaaggaggtctttctcct caagtccaagacagaagcaatcaactcgctccacctcta caacatgacagtggctgttcctctgggactgcgcattcaa cggttgaggtgcgataagggaggcgagtacacttccaa agaattcaagcagctctgcgtcgactctggcatcaccat ggagtacacctctctggcctgccccgccttggggtggg

gtgacgagggctgctacgagcagggtgctccacgtccc

gatcgtaagggcgctcacgtagcttccgccgtccgacct

tctggctctcctcctgccaacgatgacgagaaaccatcct

ttcctttcgacgatgattttgaggaggggggggcgcattttca

AKGAAG aagaggggtgacgca **OKWCSV** agaaccgacgacaag HKTTSHS aagccgaagaacaag DEGCYE caaacttcgggcggc QGAPRP aacgcaggagctaag DRKGAH ggagccgctggacag VASAVRP aagtggtgttccgtcca **SGSPPAN** caaaactacctcacac agtgacgagggctgct DDEKPSF PFDDDFE acgagcagggtgctc EGVAFSG cacgtcccgatcgtaa RTTDND gggcgctcacgtagct EGISVSN tccgccgtccgacctt PGEFTML ctggctctcctcctgcc VDSGAS aacgatgacgagaaa DHFVDD ccatcctttcctttcgac **KLIPGLR** gatgattttgaggagg **QGMTEY** gagtcgcattttcagga QTLDQP cgaacgacggacaat **KSIEIAG** gacgaagggatatca **NMKVFA** gtatccaacccgggc TATGKIY gagttcaccatgctggt GHIINKS ggacagcggcgcatc GAPRGA ggaccactttgtggat gacaagttgatcccag AHN gcctgcggcaaggca tgacggagtaccaaac gctcgaccagccgaa gtccattgagatcgctg gtaacatgaaggtattc gcgacggcaacggg

					ccgaggaaccccgcaaggacccgcaacggtctagcg		aaaaatctacggacac	
							aicaicaacaaaicag	
					accelgegeggleiggeiggegaacelgiegeegtaa		gageteeaaggggeg	
C 1	0 00 1 1100 1	G (* 2401	F 1	DACCE		DCD	cggcccacaactaa	MONUTOE
Gene 4	Scattold1081	Contig3481	Female	BAC65	atgccgaacataacatcctttgacgtttttccacccgtggt	PCR	atgeegaacataacat	MPNIISF
				2-P6	gtcattctccacattattttactcgctcgtgacccaggtgg	amplifica	cetttgacgtttttccac	
					ctcctcctgatcacccggcgggaacaacgtgggtgtgg	tion	ccgtggtgtcattctcc	SFSTLFY
					gacgatgggtctggcgtggtgctgaaggctgcagaaaa		acattattttactcgctc	SLVTQVA
					agcacaagaggaaatggagcagcgcaaggccgagca		gtgacccaggtggctc	PPDHPAG
					aaaggaggaggttcgagcagtctgtctttttcgcttgtca		ctcctgatcacccggc	TTWVWD
					ggattcatgtgttactaa		gggaacaacgtgggt	DGSGVV
							gtgggacgatgggtct	LKAAEK
							ggcgtggtgctgaag	AQEEME
							gctgcagaaaaagca	QRKAEQ
							caagaggaaatggag	KEEVRA
							cagcgcaaggccgag	VCLFRLS
							caaaaggaggaggtt	GFMCY
							cgagcagtctgtcttttt	
							cgcttgtcaggattcat	
							gtgttactaa	
			Male	PCR	Not available	PCR	Not available	Not
				amplifi		amplifica		available
				cation		tion		

^aAnnotated gene was found by BAC clone sequencing and determined by transcriptome data (Ye et al., 2015), apart from those marked by superscript letters, also verified by PCR amplification from female and male genomic DNA samples. The underlined sequences denoted the intron ones.

^bAmino-acid sequence was predicted by ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/).

^cData from Lipinska, A. P., Toda, N. R., Heesch, S., Peters, A. F., Cock, J. M., Coelho, S. M. 2017. Multiple gene movements into and out of haploid sex chromosomes. Genome Biol. 18, 104. doi: 10.1186/s13059-017-1201-7

^dTranscriptome data from Bi, Y.-H., Li, J.-L., Zhou, Z.-G. (2018). Full-length mRNA sequencing in *Saccharina japonica* and identification of carbonic anhydrase genes. Aquaculture and Fisheries 4(2), 53-60. doi: 10.1016/j.aaf.2018.11.002

Supplementary FIGURE 1. Schematic representation of 3D screening pool for *S*. *japonica* female gametophyte genome BAC library.

a) Construct the primary pool of the BAC library: 12 channels pipette was used to construct the the primary pool in sequence, and merged each 10 384-well original plates into a new 384-well plate pool. The specific operation was as follows: Took out the 384-well plate stored at -80° C and melted at room temperature. Added 50 µL LB liquid medium per well (containing chloramphenicol resistance) in advance into a new 384-well plate, and drew about 2 µL bacterial solution from the constructed BAC library to the corresponding cloning pool. Finally, the 384-well plate was cultured in a shaker with 37°C for 6 h, and stored at -80° C for use.

b) Construct the secondary pool of the BAC library: According to step one, combined the constructed eight primary pool plates into a new 384-well plate pool, and cultured in a shaker with 37° C and 180 rpm·min⁻¹ for 6 h, then stored at -80° C for use.

c) Construct the third-level pool of the BAC library: Took a sterile 96 deep-well plate, added LB freezing liquid medium containing chloramphenicol ($12.5 \text{ g} \cdot \text{mL}^{-1}$) to it, 500 µL per well, and then added the constructed one the monoclonal bacteria liquid in each of the 24 wells in each horizontal row of the secondary pool plate were added to one well of the 96-well plate. Finally, marked the plate number and date of the constructed pool on the 96-well plate, incubated with 37°C and 180 rpm·min⁻¹ for 6 h, then stored at -80°C for use.

d) Three-dimensional PCR screening of BAC library: Designed and synthesized specific primers according to the conservative regions of genes (Table 1), and used PCR amplification techniques to screen BAC library. Screened the third-level pools first, then screened the secondary and primary pools, and finally screened the original BAC plates. The positions of positive clones in the plate pool, row pool, and column pool were compared and screened to determine the corresponding specific position of the positive clone. Picked out the positive clones from the frozen BAC library, performed PCR identification and full-length sequencing of the BAC clones.

Supplementary FIGURE 2. Electrophoresis profiles of sex-linked marker products amplified from *Saccharina japonica* gametophytes and sporophytes.

Lanes 2, 3, and 12: sex-linked gene SJ-f_000170; Lanes 4, 5, and 13: sex-linked marker MSj68-58-2; Lanes 7, 8, and 14: sex-linked gene SJ-13_001840; Lanes 9, 10, and 15: sex-linked marker MSj68-16-2; Lanes 2, 4, 8, and 10: *Saccharina japonica* female gametophytes; Lanes 3, 5, 7, and 9: *S. japonica* male gametophytes; Lanes from 12 through 15: *S. japonica* sporophytes; Lanes 1, 6, and 11: controls with H₂O as template instead of genomic DNA; and Lane M: DL2000 Plus DNA Marker (Vazyme, Nanjing, China).

Supplementary FIGURE 3. Electrophoresis profiles of the labeled probes by nick translation.

Lane M: DL2000 DNA Marker (TaKaRa, Kyoto, Japan); Lane 1: control with H₂O as template instead of genomic DNA; Lane 2: labeled MSj68-58-2 (green); Lane 3: labeled SJ-f_000170 (red); Lane 4: labeled SJ-13_001840 (red); Lane 5: labeled MSj68-16-2 (green); and Lane 6: labeled SJ-f_000170 (green).

Supplementary FIGURE 4. FISH images showing hybridization sites of the four sex-linked markers on *Saccharina japonica* gametophyte chromosomes counterstained with DAPI (blue).

Hybridization signals of SJ-f_000170 marker (red) and MSj68-58-2 marker (green) on the chromosomes of *Saccharina japonica* female gametophytes are indicated by arrowheads. Hybridization signals SJ-13_001840 marker (red) and MSj68-16-2 marker (green) on the nuclei of *S. japonica* male gametophytes are also indicated by arrowheads. FISH signals of both MSj68-58-2 (green) and SJ-13_001840 (red) markers presented are conspicuously twin spots.

Supplementary FIGURE 5. Co-localization of two sex-linked markers SJ-13_001840 (red) and SJ-f_000170 (green) using dual-color FISH technique on *Saccharina japonica* sporophyte chromosomes which were counterstained with DAPI (blue).

Arrows denote the sites of hybridization signals on sporophyte chromosomes. The FISH signal of SJ-f_000170 (green) presented are unambiguously twin spots. The insets in the merged image clearly illustrate the signals are present on two different chromosomes in size.

Supplementary FIGURE 6. Alignment of the matched scaffolds and contigs which were retrieved from the assembled *Saccharina japonica* gametophyte genome (Ye et al., 2015) and sporophyte one (Shao et al., 2019), respectively, using each sex-linked marker as a query.

The arrows denote the relative position of each sex-linked marker used in the present study at the matched contigs and scaffolds. Alignment scores: the graphic is an overview of the database sequences aligned to the query sequence. These are represented horizontal bars colored coded by score and showing the extent of the alignment on the query sequence. Separate aligned regions on the same database sequence are connected by a grey line.

M1 A B C D E F G H I J K L M N O P M1

M1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 M1 M1 23 24

(b)

Supplementary FIGURE 7. Electrophoresis profiles of amplified products for screening of positive clones carrying the U-linked markers SJ-f_000170 (a) and MSj68-58-2 (b) from the constructed BAC libraries of *Saccharina japonica* female gametophytes. Lane M1: DL2000 DNA Marker (TaKaRa, Kyoto, Japan); Lane M2: DNA Marker VI (Tiangen Biotech, Beijing, China); Lanes from A trough P: representing the longitudinal screening of the BAC secondary pool; Lanes from 1 through 24: representing the horizontal screening of the BAC primary pool; Lanes from 33 (a) or 34 (b) through 42 (a) or 44 (b): representing the screening of the original BAC library.

Supplementary FIGURE 8. Sequence comparison between each insert of the two screened BAC clones as a query and the matched scaffolds or contigs from the assembled gametophyte (A and C, Ye et al., 2015) or sporophyte genomes (B and D, Shao et al., 2019) of

Saccharina japonica.

Supplementary FIGURE 9. Electrophoresis profiles of the four annotated genes amplified from genomic DNA of *Saccharina japonica* **male and female gametophytes.** Lanes 1 and 2: partial products of Gene 1 as amplified by the pair of primers g1-F1/R1; Lanes 3 and 4: partial products of Gene 1 as amplified by the pair of primers g1-F2/R2; Lanes 5 and 6: partial products of Gene 3 as amplified by the pair of primers g3-F1/R1; Lanes 7 and 8: partial products of Gene 3 as amplified by the pair of primers g3-F2/R2; Lanes 9 and 10: Gene 2 products as amplified by the pair of primers g2-F/R; Lanes 11 and 12: Gene 4 products as amplified by the pair of primers g4-F/R; M1 representing D2000 Marker (TaKaRa, Kyoto, Japan) while M2 representing DNA Ladder A Plus (Sangon, Shanghai, China).

Supplementary FIGURE 10. Amplification curve of annotated Gene 4 from the sequenced BAC clone BAC652-P6 as detected by quantitative real-time PCR (qRT-PCR).

Amplification curve was plotted by cycle number versus RFU, and three replicates were performed for each reference DNA sample.

Supplementary FIGURE 11. Comparisons of the genomic regions surrounding the genes SJ-f_000080, SJ-f_000170, SJ-f_000010, and marker MSj-68-58-2, which were syntenic to the Ec-sdr_f_000080, Ec-sdr_f_000170, Ec-sdr_f_00010, and Esi_0068_0058 in the U SDR of *Ectocarpus* sp. (Lipinska et al., 2015, 2017), respectively, in between the sequenced inserts of two BAC clones and the assembled genome of *Saccharina japonica* (Shao et al., 2019).

Alignment scores in each matched contig were the same as Supplementary Figures 6 and 8.