

High-throughput Screening of Antimicrobial Resistance Genes and their Association with Class 1 Integrons in Urban Rivers in Japan

Ikuro Kasuga^{1*}, Kyoka Nagasawa¹, Masato Suzuki², Futoshi Kurisu³, Hiroaki Furumai³

¹Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

²Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan

³Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

* Correspondence: Ikuro Kasuga kasuga@env.t.u-tokyo.ac.jp

Table S1 Primers and probes used for conventional qPCF
--

Target	Primer/probe	Sequence [5'-3']	Reference
168 mDNA some	Forward primer	341F: CCTACGGGAGGCAGCAG	(Drm at al 2008)
105 rKINA gene	Reverse primer	534R: ATTACCGCGGCTGCTGG	(Bru et al., 2008)
in 4]]	Forward prime	intI1F165: CGAACGAGTGGCGGAGGGTG	(Cillings at al. 2015)
intii	Reverse primer	intI1R476: TACCCGAGAGCTTGGCACCCA	(Gillings et al., 2013)
sull	Forward prime	sul1_F (6)-492: CGCACCGGAAACATCGCTGCAC	(Poi at al 2006)
	Reverse primer	sull_R (6)-492: TGAAGTTCCGCCGCAAGGCTCG	(Fel et al., 2000)
tot 1	Forward prime	tetA_F (6)-542: GCTACATCCTGCTTGCCTTC	$(I_{22} \text{ at al} 2017)$
lelA	Reverse primer	tetA_R (6)-542: CATAGATCGCCGTGAAGAGG	(Lee et al., 2017)
	Forward prime	CPQ056F1: CAGAAGTACAAACTCCTAAAAAACGTAGAG	
crAssphage	Reverse primer	CPQ056R1: GATGACCAATAAACAAGCCATTAGC	(Stachler et al., 2017)
	Probe	CPQ056P1: [FAM]-AATAACGATTTACGTGATGTAAC-[MGB]	

Classification	Gene code	Assay ID	Forward primer [5'-3']	Reverse primer [5'-3']
Housekeeping gene	16S rRNA	AY1	GGGTTGCGCTCGTTGC	ATGGYTGTCGTCAGCTCGTG
	aacC2	AY2	ACGGCATTCTCGATTGCTTT	CCGAGCTTCACGTAAGCATTT
	aadA_1	AY10	GTTGTGCACGACGACATCATT	GGCTCGAAGATACCTGCAAGAA
Aminaglugasida	strB	AY24	GCTCGGTCGTGAGAACAATCT	CAATTTCGGTCGCCTGGTAGT
Ammogrycoside	aadA2_3	AY331	CAATGACATTCTTGCGGGTATC	GACCTACCAAGGCAACGCTATG
	aadA1_1	AY395	TGTACGGCTCCGCAGTG	CACGGAATGATGTCGTCGTG
	aadA6	AY411	CCATCGAGCGTCATCTGGAA	CCCGTCTGGCCGGATAAC
	blaVEB	AY105	CCCGATGCAAAGCGTTATG	GAAAGATTCCCTTTATCTATCTCAGACAA
	blaOXY	AY108	CGTTCAGGCGGCAGGTT	GCCGCGATATAAGATTTGAGAATT
	cfxA	AY114	TCATTCCTCGTTCAAGTTTTCAGA	TGCAGCACCAAGAGGAGATGT
	blaGES	AY125	GCAATGTGCTCAACGTTCAAG	GTGCCTGAGTCAATTCTTTCAAAG
	blaSFO	AY126	CCGCCGCCATCCAGTA	GGGCCGCCAAGATGCT
Beta-lactam	blaCTX-M_5	AY134	GCGATAACGTGGCGATGAAT	GTCGAGACGGAACGTTTCGT
	blaCTX-M_8	AY147	CGTCACGCTGTTGTTAGGAA	CGCTCATCAGCACGATAAAG
	blaNDM	AY152	GGCCACACCAGTGACAATATCA	CAGGCAGCCACCAAAAGC
	blaCMY_3	AY429	CTGGCGCATACCTGGATTAC	GCCAGTTCAGCATCTCCCA
	blaOXA51	AY435	CGACCGAGTATGTACCTGCTTC	TCAAGTCCAATACGACGAGCTA
	blaOXY1	AY436	AAAGGTGACCGCATTCGC	CCAGCGTCAGCTTGCG
	blaSHV11	AY438	TTGACCGCTGGGAAACGG	TCCGGTCTTATCGGCGATAAAC
	blaTEM	AY439	CGCCGCATACACTATTCTCAG	GCTTCATTCAGCTCCGGTTC
	acrB_1	AY199	AGTCGGTGTTCGCCGTTAAC	CAAGGAAACGAACGCAATACC
	acrF	AY201	GCGGCCAGGCACAAAA	TACGCTCTTCCCACGGTTTC
	adeA	AY202	CAGTTCGAGCGCCTATTTCTG	CGCCCTGACCGACCAAT
Multi-drug resistance	emrD_1	AY208	CTCAGCAGTATGGTGGTAAGCATT	ACCAGGCGCCGAAGAAC
(MDR)	qacE∆1_1	AY218	TCGCAACATCCGCATTAAAA	ATGGATTTCAGAACCAGAGAAAGAAA
	_qacE∆1_3	AY236	GTCGGTGTTGCTTATGCAGTCT	CAACCAGGCAATGGCTGTAA
	qacF/H	AY489	CTGAAGTCTAGCCATGGATTCACTAG	CAAGCAATAGCTGCCACAAGC
	pcoA	AY495	TGGCGTATGGAGTTTCAATGC	GAATAATGCCGTGCCAGTGAA
	ermF_1	AY46	CAGCTTTGGTTGAACATTTACGAA	AAATTCCTAAAATCACAACCGACAA
	pncA	AY73	GCAATCGAGGCGGTGTTC	TTGCCGCAGCCAATTCA
	ereA	AY528	GATAATTCTGCTGGCGCACA	GCAGGCGTGGTCACAAC
	ereA_2	AY529	TCGTATATGGCGGGCGTAGTA	GGTCCAAGATGGGTGAATGCA
MLSB	ermB_2	AY533	GAACACTAGGGTTGTTCTTGCA	CTGGAACATCTGTGGTATGGC
	mphA	AY539	TCAGCGGGATGATCGACTG	GAGGGCGTAGAGGGCGTA
	ermX_2	AY546	TGATGACGGCTCAGTGG	GTGCACCAGCGCCTGA
	ermB_3	AY547	TGAAAGCCATGCGTCTGAC	TTCAGCTGGCAGCTTAAGC
	msrE	AY553	CGGCAGATGGTCTGAGCTTAAA	CGCACTCTTCCTGCATAAAGGA

Table S2 Primers used for HT-qPCR

	Table S2 Primers used for H1-qPCR (continued)						
Classification	Gene	Assay ID	Forward primer [5'-3']	Reverse primer [5'-3']			
	catB3	AY29	GCACTCGATGCCTTCCAAAA	AGAGCCGATCCAAACGTCAT			
Dhaniaal	cmlA_2	AY35	TAGGAAGCATCGGAACGTTGAT	CAGACCGAGCACGACTGTTG			
Phenicol	cmxA	AY37	GCGATCGCCATCCTCTGT	TCGACACGGAGCCTTGGT			
	cmlA_4	AY41	GCGCTCTTCGAGGATTCG	CCGCCCAAGCAGAAGTAGAC			
Polymyxin	mcr1	AY466	CACATCGACGGCGTATTCTG	CAACGAGCATACCGACATCG			
	qnrB	AY96	GCGACGTTCAGTGGTTCAGA	GCTGCTCGCCAGTCGAA			
Quinolone	qnrD	AY459	CGCTGGAATGGCACTGTGA	GCTCTCCATCCAACTTCACTCC			
	qnrS2	AY461	TCCCGAGCAAACTTTGCCAA	GGTGAGTCCCTATCCAGCGA			
Sulfonamide	sul1_2	AY245	GCCGATGAGATCAGACGTATTG	CGCATAGCGCTGGGTTTC			
	sul2_2	AY365	TCATCTGCCAAACTCGTCGTTA	GTCAAAGAACGCCGCAATGT			
	tetA_2	AY254	CTCACCAGCCTGACCTCGAT	CACGTTGTTATAGAAGCCGCATAG			
Tetracycline	tetQ	AY259	CGCCTCAGAAGTAAGTTCATACACTAAG	TCGTTCATGCGGATATTATCAGAAT			
	tetW	AY263	ATGAACATTCCCACCGTTATCTTT	ATATCGGCGGAGAGCTTATCC			
	tetX	AY267	AAATTTGTTACCGACACGGAAGTT	CATAGCTGAAAAAATCCAGGACAGTT			
	tetE	AY273	TTGGCGCTGTATGCAATGAT	CGACGACCTATGCGATCTGA			
	tetM	AY574	GGAGCGATTACAGAATTAGGAAGC	TCCATATGTCCTGGCGTGTC			
	tetR	AY577	CCGTCAATGCGCTGATGAC	GCCAATCCATCGACAATCACC			
	dfrA1_1	AY284	GGAATGGCCCTGATATTCCA	AGTCTTGCGTCCAACCAACAG			
Trim oth a mine	dfrA1	AY579	CGGATCATGTCATTGTTTCAGG	ATGTTAGAGGCGAAGTCTTGG			
Trimetnoprim	dfrA17	AY581	CGGGAACGGCCCTGATATTCC	CGTGTTGCGACCGCATACTTTC			
	dfrA27	AY586	GCCGCTCAGGATCGGTA	GTCGAGATATGTAGCGTGTCG			
	intI1_2	AY289	CGAAGTCGAGGCATTTCTGTC	GCCTTCCAGAAAACCGAGGA			
	intI1_1	AY293	CGAACGAGTGGCGGAGGGTG	TACCCGAGAGCTTGGCACCCA			
	Tp614	AY297	GGAAATCAACGGCATCCAGTT	CATCCATGCGCTTTTGTCTCT			
	tnpA_1	AY299	GCCGCACTGTCGATTTTTATC	GCGGGATCTGCCACTTCTT			
MCE	tnpA_2	AY300	CCGATCACGGAAAGCTCAAG	GGCTCGCATGACTTCGAATC			
MGE	ISPps	AY309	CACACTGCAAAAACGCATCCT	TGTCTTTGGCGTCACAGTTCTC			
	IS26_1	AY512	ATGGATGAAACCTACGTGAAGGTC	CGGTACTTAATCTGTCGGTGTTCA			
	ISCR1	AY519	ATGGTTTCATGCGGGTT	CTGAGGGTGTGAGCGAG			
	Tn3	AY523	GCTGAGGTGTTCAGCTACATCC	GCTGAGGTAGTCACAGGCATTC			
	Tn5403	AY524	AAGCGAATGGCGCGAAC	CGCGCAGGGTAAACTGC			

Table S? Drimors used for UT aDCD (continued)

Table S3 Water quality data

River	Code (Group)	pН	Water temp. (°C)	Conductivity (µS/cm)	Ammonium (mg N/L)	Total cell count (cells/mL)	T. coli (CFU/100 mL)	<i>E. coli</i> (CFU/100 mL)
	TM1 (A)	7.4	19.4	81	0.034	3.3×10^{6}	1.4×10^{3}	$< 3.3 \times 10^{1}$
	TM2 (A)	7.6	22.9	137	0.055	2.7×10^{6}	5.9×10^{3}	3.3×10^{1}
Tamagawa River	TM3 (C)	7.7	25.2	248	0.041	6.2×10^{6}	1.2×10^4	5.3×10^{2}
-	TM4 (C)	7.8	29.2	275	0.089	5.0×10^{6}	1.2×10^{4}	2.5×10^{3}
	TM5 (C)	7.9	28.1	264	0.048	6.1×10^{6}	5.9×10^{3}	8.3×10^{2}
Akikawa River	AK (A)	7.4	22.6	118	0.038	1.8×10^{6}	8.3×10^{3}	1.0×10^{2}
Yaji River	YJ (A)	7.8	24.1	195	0.067	5.1×10^{6}	1.1×10^{4}	4.0×10^{2}
Kitaasa River	KA (A)	7.4	20.1	148	0.049	5.8×10^{5}	5.4×10^{3}	$< 3.3 \times 10^{1}$
Minamiasa River	MA (A)	7.5	22.1	128	0.055	9.4×10^{5}	6.4×10^{3}	6.7×10^{1}
Asakawa River	AS (C)	7.8	26.2	192	0.060	1.1×10^{6}	5.6×10^{3}	2.0×10^{2}
Nogawa River	NO (A)	8.6	30.3	241	0.082	4.5×10^{6}	1.9×10^{4}	1.0×10^{3}
Imumo Divor	IR1 (A)	7.8	17.2	103	0.010	1.6×10^{5}	$< 3.3 \times 10^{1}$	$< 3.3 \times 10^{1}$
Iruma River	IR2 (B)	7.6	25.6	203	0.150	3.4×10^{6}	6.4×10^{3}	2.7×10^{2}
Analyarra Diryan	AR1 (B)	7.6	12	252	0.151	4.1×10^{6}	$1.0 imes 10^4$	9.0×10^{2}
Afakawa Kiver	AR2 (C)	6.8	16.9	407	NA	1.9×10^{7}	$1.3 imes 10^4$	8.7×10^{2}
Hokota River	HO (A)	7.3	10.8	355	0.212	2.1×10^{6}	2.6×10^4	6.7×10^{2}
Koise River	KI (B)	7.3	10.1	202	0.135	2.6×10^{6}	$1.6 imes 10^4$	1.7×10^{2}
Sakura River	SK (A)	7.2	11.2	209	0.074	3.1×10^{6}	5.8×10^{3}	3.3×10^{2}
Kokai River	KK (B)	7.2	12.7	206	0.048	3.3×10^{6}	2.4×10^{3}	3.3×10^{1}
Kinugawa River	KN (B)	7.4	11.2	190	0.184	3.3×10^{6}	4.0×10^{3}	3.3×10^{1}
Ohori River	OH (A)	7.6	12.1	351	0.187	4.2×10^{6}	2.7×10^{3}	6.7×10^{1}
Edogawa River	ED (A)	7.7	7.2	278	0.124	5.4×10^{6}	1.6×10^{3}	$< 3.3 \times 10^{1}$
Sumida River	SM (C)	7.7	13.7	3999	0.051	8.4×10^{6}	1.8×10^{3}	2.0×10^{2}
Nakagawa River	NK (B)	7.5	12.7	686	1.250	1.7×10^{7}	1.7×10^{3}	6.7×10^{1}
Shinshiba River	SS (B)	7.4	9.9	3999	2.62	8.2×10^{6}	3.7×10^{2}	3.3×10^{1}
Motoara River	MT (C)	7.7	7.1	410	0.525	9.2×10^{6}	3.7×10^{3}	2.3×10^{2}
Sakawa River	SW (B)	7.8	11	193	0.019	2.2×10^{6}	3.8×10^{3}	3.3×10^{1}
Sagami River	SG (A)	7.7	13.8	227	0.022	3.4×10^{6}	6.7×10^{2}	1.3×10^{2}
Sakai River	SI(C)	7.4	16	1725	0.909	2.6×10^{7}	8.8×10^{3}	1.1×10^{3}
Tsurumi River	TR (C)	7.3	15.8	683	0.382	3.3×10^{7}	3.5×10^{3}	2.3×10^{2}

NA: not available

River	Code	Total bases (Mb)	Number of raw reads	Mean length of raw reads(bp)
	TM1	14.0	27,347	511.8
	TM2	17.8	20,038	887.2
Tamagawa River	TM3	21.6	31,011	696.9
	TM4	19.9	33,452	596.3
	TM5	18.5	23,674	782.9
Akikawa River	AK	19.4	24,074	805.0
Yaji River	YJ	28.6	40,921	699.4
Kitaasa River	KA	22.7	23,401	969.8
Minamiasa River	MA	29.1	32,997	881.8
Asakawa River	AS	20.7	19,299	1073.4
Nogawa River	NO	19.5	24,945	781.5
I D'	IR1	24.3	32,711	743.1
Iruma River	IR2	23.7	29,415	807.0
A 1 D'	AR1	17.1	20,533	832.9
Arakawa River	AR2	24.2	35,099	690.4
Hokota River	НО	16.3	16,633	982.4
Koise River	KI	23.8	31,559	755.7
Sakura River	SK	18.5	24,124	768.6
Kokai River	KK	22.5	30,198	744.9
Kinugawa River	KN	20.3	21,933	923.5
Ohori River	OH	19.5	22,735	856.2
Edogawa River	ED	12.7	14,818	857.0
Sumida River	SM	14.5	13,827	1050.9
Nakagawa River	NK	18.9	25,990	725.6
Shinshiba River	SS	17.7	18,330	968.3
Motoara River	MT	18.8	24,397	772.4
Sakawa River	SW	18.3	20,331	902.0
Sagami River	SG	20.1	25,802	780.5
Sakai River	SI	18.2	29,539	617.7
Tsurumi River	TR	14.8	24,733	597.0
	A-Inf	20.1	23,410	859.3
WWIP A	A-Eff	19.2	37,495	512.5
	B-Inf	24.3	24,602	986.1
WWIPB	B-Eff	20.3	23,430	864.9
	C-Inf	20.0	22,163	900.4
WWIPC	C-Eff	25.8	39,436	654.0
	D-Inf	18.2	16,807	1080.4
wwird	D-Eff	22.0	37,788	580.9

 Table S4 Statistical information of nanopore sequencing

River	Code	Number	Min	1 st quartile	2^{nd} quartile	3 rd quartile	Max
	TM1	of contigs	(bp) 500	(bp)	(bp)	(bp) 1005	(bp) 4580
		870	500	390	883 072	1093	4380
T D:		1019	500	807 (50	9/3	1103	5054 2144
Tamagawa Kiver		1127	510	639	810	1004	2144
	1 M4	1128	520	660	975	1043	1836
Alrilance Diven		895	503	822	1005	1168	2554
AKIKawa Kiver	AK	946	527	646	8/4	1164	2868
Vitaga Diver	Y J V A	/65	520	984	1418	1604	33/9
Minanai River	KA	1213	501	5/1	593	812	4043
Minamiasa River	MA	1132	517	576	647	1085	2090
Asakawa River	AS	702	508	975	1003	1503	2536
Nogawa River	NO	1024	501	659	981	1043	1739
Iruma River	IRI	933	500	642	983	1155	3027
	IR2	777	517	688	1005	1516	2473
Arakawa River	ARI	817	539	659	1037	1512	1915
	AR2	1045	519	804	991	1119	1931
Hokota River	HO	646	526	994	1144	1515	2768
Koise River	KI	571	525	992	1025	1167	1762
Sakura River	SK	714	500	986	1143	1518	2551
Kokai River	KK	983	508	886	1013	1171	2486
Kinugawa River	KN	1004	511	982	1004	1168	2524
Ohori River	OH	736	620	995	1149	1522	2397
Edogawa River	ED	875	544	737	1016	1512	2531
Sumida River	SM	877	515	993	1489	1535	2784
Nakagawa River	NK	1228	557	645	977	1154	1763
Shinshiba River	SS	1017	525	844	884	1168	1763
Motoara River	MT	902	504	659	1031	1508	1764
Sakawa River	SW	802	516	971	1139	1511	2546
Sagami River	SG	873	500	724	989	1043	2491
Sakai River	SI	1068	513	660	835	1034	1859
Tsurumi River	TR	1061	529	680	966	1144	1728
	A-Inf	898	511	963	1002	1168	2366
WWIP A	A-Eff	1048	500	826	999	1168	2503
	B-Inf	785	501	959	1001	1161	2365
WWIPB	B-Eff	646	526	822	1111	1983	2010
	C-Inf	819	505	787	1002	1152	1932
WWIPC	C-Eff	950	509	813	995	1290	2089
	D-Inf	764	508	778	997	1156	1931
WWTP D	D-Eff	1041	504	791	994	1224	1989

Table S5 Contig sizes of class 1 integron GCs

ARGs acquired in class 1 integron GCs	Category	Total number of contigs		
	Category	(% of total contigs containing ARGs)		
Class 1 integron GCs carrying one ARG				
bla _{GES-24}	BLA	3519 (15.5%)		
aadA2	AMG	3491 (15.4%)		
qacH	MDR	3397 (15.0%)		
aadA5	AMG	1824 (8.0%)		
aadA1	AMG	1778 (7.8%)		
_aac(6')-31	AMG	1552 (6.8%)		
ere(A)	MLSB	1142 (5.0%)		
_ant(3'')-Ia	AMG	359 (1.6%)		
dfrA32	TMP	334 (1.5%)		
bla _{GES-3}	BLA	278 (1.2%)		
bla _{OXA-21}	BLA	210 (0.9%)		
aadA24	AMG	168 (0.7%)		
aadA8b	AMG	154 (0.7%)		
aadA15	AMG	147 (0.6%)		
bla _{OXA-10}	BLA	144 (0.6%)		
cmlA1	PHE	119 (0.5%)		
aac(6')-IIc	AMG	118 (0.5%)		
dfrA5	TMP	109 (0.5%)		
dfrA27	TMP	104 (0.5%)		
bla _{GES-5}	BLA	93 (0.4%)		
aac(6')-Ib	AMG	92 (0.4%)		
dfrA17	TMP	78 (0.3%)		
aadA10	AMG	70 (0.3%)		
aadA2b	AMG	56 (0.2%)		
dfrA25	TMP	55 (0.2%)		
blacarb-2	BLA	52 (0.2%)		
aadA17	AMG	41 (0.2%)		
catB8	PHE	36 (0.2%)		
aadA9	AMG	33 (0.1%)		
aac(6')-Ib-Hangzhou	AMG	31 (0.1%)		
hlaoxa-2	BLA	29 (0.1%)		
dfrB4	TMP	26 (0.1%)		
aacE	MDR	22 (0.1%)		
aadA3	AMG	21 (0.1%)		
catB3	PHE	16 (0.1%)		
aadA11	AMG	12 (0.1%)		
dfrB1	ТМР	12 (0.1%)		
blaox	BLA	8 (0.0%)		
and 412	AMG	6 (0.0%)		
aad 423	AMG	6 (0.0%)		
uuu112J		0.070)		

 Table S6 Classification of class 1 integron GCs containing ARGs

APCs acquired in class 1 integron CCs	Catagory	Total number of contigs
	Category	(% of total contigs containing ARGs)
Class 1 integron GCs carrying one ARG		
bla _{OXA-246}	BLA	6 (0.0%)
dfrA33	TMP	6 (0.0%)
bla _{GES-4}	BLA	5 (0.0%)
_dfrA14	TMP	5 (0.0%)
_aac(6')-Ib-Suzhou	AMG	4 (0.0%)
bla _{IMP-1}	BLA	4 (0.0%)
bla _{OXA-539}	BLA	4 (0.0%)
_ cml	PHE	4 (0.0%)
aac(6')-Il	AMG	3 (0.0%)
aadA4	AMG	3 (0.0%)
aadA6	AMG	3 (0.0%)
aac(6')-IIa	AMG	2 (0.0%)
bla _{CARB-3}	BLA	2 (0.0%)
bla _{GES-6}	BLA	2 (0.0%)
bla _{VEB-1}	BLA	2 (0.0%)
aac(6')-29b	AMG	1 (0.0%)
aadA22	AMG	1 (0.0%)
aadA8	AMG	1 (0.0%)
bla _{IMP-60}	BLA	1 (0.0%)
bla _{OXA-1}	BLA	1 (0.0%)
bla _{OXA-17}	BLA	1 (0.0%)
bla _{OXA-415}	BLA	1 (0.0%)
bla _{VEB-2}	BLA	1 (0.0%)
dfrA12	ТМР	1 (0.0%)
dfrA21	ТМР	1 (0.0%)
Class 1 integron GCs carrying two ARGs		
aadA2, qacH	AMG, MDR	1568 (6.9%)
bla _{VEB-1} , catB8	BLA, PHE	195 (0.9%)
aac(6')-IIa, ere(A)	AMG, MLSB	177 (0.8%)
aadA2b, bla _{OXA-1}	AMG, BLA	174 (0.8%)
aadA2, cmlA1	AMG, PHE	90 (0.4%)
<i>aac(6')-IIc, catB8</i>	AMG, PHE	84 (0.4%)
aadA5, dfrA17	AMG, TMP	80 (0.4%)
aadA1, catB8	AMG, PHE	39 (0.2%)
aadA8b, qacH	AMG, MDR	27 (0.1%)
aadA2b, bla _{OXA-320}	AMG, BLA	22 (0.1%)
aadA5, gacH	AMG, MDR	22 (0.1%)
aadA6, catB3	AMG, PHE	21 (0.1%)
aadA1, gacH	AMG, MDR	19 (0.1%)

Table S6 Classification of class 1 integron GCs containing ARGs (continued)

ARGs acquired in class 1 integron GCs	Category	Total number of contigs		
	Cutegory	(% of total contigs containing ARGs)		
Class 1 integron GCs carrying two ARGs				
aac(6')-31, qacH	AMG, MDR	17 (0.1%)		
aac(6')-Ib, aadA1	AMG, AMG	17 (0.1%)		
aadA1, catB3	AMG, PHE	15 (0.1%)		
bla _{VEB-1} , catB3	BLA, PHE	12 (0.1%)		
_aar-3, dfrA27	RFM, TMP	10 (0.0%)		
dfrA32, $ere(A)$	TMP, MLSB	9 (0.0%)		
<i>aac(6')-31, bla</i> _{OXA-17}	AMG, BLA	6 (0.0%)		
aadA2, catB3	AMG, PHE	6 (0.0%)		
aadA3, qacH	AMG, MDR	6 (0.0%)		
aac(6')-31, catB8	AMG, PHE	5 (0.0%)		
aadA2b, bla _{OXA-9}	AMG, BLA	5 (0.0%)		
$aadA5$, bla_{OXA-21}	AMG, BLA	5 (0.0%)		
bla _{OXA-21} , catB3	AMG, PHE	5 (0.0%)		
aadA2, dfrA12	AMG, TMP	4 (0.0%)		
aac(6')-31, aadA2	AMG, AMG	3 (0.0%)		
aadA16, catB3	AMG, PHE	3 (0.0%)		
$aadA2, bla_{GES-5}$	AMG, BLA	3 (0.0%)		
$aadA2$, $bla_{0XA-129}$	AMG, BLA	3 (0.0%)		
$aadA2$, bla_{0XA-9}	AMG, BLA	3 (0.0%)		
aadA5. ere(A)	AMG, MLSB	3 (0.0%)		
aac(6')-Ib, aadA5	AMG, AMG	2 (0.0%)		
$aadAl, bla_{0XA-17}$	AMG, BLA	2 (0.0%)		
$aadA1$, bla_{0XA-4}	AMG, BLA	2 (0.0%)		
aadA2, catB8	AMG, PHE	2 (0.0%)		
aadA2, ere(A)	AMG, MLSB	2 (0.0%)		
aadA23. catB8	AMG, PHE	2 (0.0%)		
aadA2h aacH	AMG, MDR	2 (0.0%)		
aac(6')-Ib. aadA3	AMG, AMG	1 (0.0%)		
$aac(6')$ -Ib-Suzhou $bla_{GES,24}$	AMG. BLA	1 (0.0%)		
addl black 1	AMG. BLA	1 (0.0%)		
addl blaver 2	AMG. BLA	1 (0.0%)		
add Allo aacH	AMG, MDR	1 (0.0%)		
add11 catB3	AMG. PHE	1 (0.0%)		
add 12 aacH	AMG MDR			
add 15 add 8b	AMG AMG			
add15 black	AMG BLA			
add417 catR8	AMG. PHE			
aad 417 dfr 412	AMG TMP	1 (0.0%)		
aad 117, april 2	AMG MDR	1 (0.0%)		
add 2 ant (2") Ia	AMG AMG	1 (0.0%)		
uuu/12, um(2)-1u	11110, 11110	1 (0.070)		

 Table S6 Classification of class 1 integron GCs containing ARGs (continued)

ABGs acquired in class 1 integron GGs	Category	Total number of contigs		
AROS acquired in class 1 integron Ges	Category	(% of total contigs containing ARGs)		
aadA2, aar-3	AMG, RFM	1 (0.0%)		
aadA2, bla _{OXA-1}	AMG, BLA	1 (0.0%)		
aadA2, cml	AMG, PHE	1 (0.0%)		
aadA22, qacH	AMG, MDR	1 (0.0%)		
aadA23, qacH	AMG, MDR	1 (0.0%)		
aadA24, catB8	AMG, PHE	1 (0.0%)		
aadA24, dfrA17	AMG, TMP	1 (0.0%)		
aadA24, qacH	AMG, MDR	1 (0.0%)		
aadA2b, bla _{OXA-246}	AMG, BLA	1 (0.0%)		
aadA2b, catB3	AMG, PHE	1 (0.0%)		
aadA2b, cmlA1	AMG, PHE	1 (0.0%)		
aadA2b, dfrA12	AMG, TMP	1 (0.0%)		
aadA3, bla _{OXA-9}	AMG, BLA	1 (0.0%)		
aadA3, catB3	AMG, PHE	1 (0.0%)		
aadA5, aadA8b	AMG, AMG	1 (0.0%)		
aadA5, bla _{IMP-1}	AMG, BLA	1 (0.0%)		
aadA8b, bla _{OXA-4}	AMG, BLA	1 (0.0%)		
aadA8b, catB8	AMG, PHE	1 (0.0%)		
ant(3'')-Ia, qacH	AMG, MDR	1 (0.0%)		
bla _{GES-24} , catB8	BLA, PHE	1 (0.0%)		
bla _{GES-24} , ere(A)	BLA, MLSB	1 (0.0%)		
bla _{VEB-2} , catB8	BLA, PHE	1 (0.0%)		
bla _{VEB-4} , catB8	BLA, PHE	1 (0.0%)		
Class 1 integron GCs carrying three ARGs				
aac(6')-IIa, bla _{OXA-21} , catB3	AMG, BLA, PHE	172 (0.8%)		
aac(6')-IIa, aac(6')-IIa, ere(A)	AMG, AMG, MLSB	9 (0.0%)		
<i>aac(6')-Ib, bla</i> _{OXA-129} , <i>catB3</i>	AMG, BLA, PHE	7 (0.0%)		
<i>aac(6')-Ib, aac(6')-Ib, bla</i> _{OXA-246}	AMG, AMG, BLA	4 (0.0%)		
<i>aac(6')-Ib, aac(6')-Ib, bla</i> _{OXA-10}	AMG, AMG, BLA	2 (0.0%)		
aadA1, bla _{VEB-1} , catB8	AMG, BLA, PHE	2 (0.0%)		
aac(6')-IIa, aac(6')-IIa, aadA15	AMG, AMG, AMG,	1 (0.0%)		

 Table S6 Classification of class 1 integron GCs containing ARGs (continued)

Figure S1 Comparison between HT-qPCR and conventional qPCR. (a) *int11*/16S rRNA gene, (b) *sul1*/16S rRNA gene, (c) *tetA*/16S rRNA gene.

Figure S2 Relationship between relative abundances of total ARGs and total MGEs.

Figure S3 Microbial community structures analyzed by amplicon sequencing of 16S rRNA genes.

Figure S4 Comparison of relative abundances of *int11* between AY289 and AY293.

Figure S5 Relative abundances of *intl1* and crAssphage determined by conventional qPCR.

TM1 M TM2	TM3 TM TM4	IS YJ AK	KA MA	AS NO	R1 AR	AR2 1 M
					• •	12
			22			
225			22			
						-

Μ	HO	KI	SK	KĶ	KN	OH	ED	SM	NK	SS	MT	SW	SG	SI	TR ;	М	
-		Ξ					i i			H						=	
-		-	Ξ	-		Ξ			-		-		=	-	-	-	

Figure S6 Electrophoresis of class 1 GCs on 1.0% agarose gel. M: 500 bp ladder (500–5,000 bp). NC: negative control.

Figure S7 Composition of contigs of class 1 integron GCs.

References

- Bru, D., Martin-Laurent, F., and Philippot, L. (2008). Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. *Appl Environ Microbiol* 74(5), 1660-1663. doi: 10.1128/AEM.02403-07.
- Gillings, M.R., Gaze, W.H., Pruden, A., Smalla, K., Tiedje, J.M., and Zhu, Y.G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. *ISME J* 9(6), 1269-1279. doi: 10.1038/ismej.2014.226.
- Lee, J., Jeon, J.H., Shin, J., Jang, H.M., Kim, S., Song, M.S., et al. (2017). Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. *Sci Total Environ* 605-606, 906-914. doi: 10.1016/j.scitotenv.2017.06.250.
- Pei, R., Kim, S.C., Carlson, K.H., and Pruden, A. (2006). Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). *Water Res* 40(12), 2427-2435. doi: 10.1016/j.watres.2006.04.017.
- Stachler, E., Kelty, C., Sivaganesan, M., Li, X., Bibby, K., and Shanks, O.C. (2017). Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement. *Environ Sci Technol* 51(16), 9146-9154. doi: 10.1021/acs.est.7b02703.