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Table S1: List of anti-biofilm bacteriophage therapy trials
	Author, year
	Biofilm-forming bacteria
	Phage strain
	Growth site
	Results

	(Cano et al., 2021)
	K. pneumoniae
	KpJH46Φ2
	Bacterial site in the right lower extremity of the patient; 96-well polystyrene microtitre plates

	· In vivo anti-biofilm activity showed patients recovering from swelling, pain, and limited range of motion of right lower extremity. The 34-week follow-up showed no sign of symptom recurrence.  
· In vitro anti-biofilm activity showed a trend in biofilm biomass reduction after 22 hours of its exposure to phage. 

	(Manoharadas et al., 2021)
	S. aureus
	ɸ44AHJD
	Sterile glass coverslips 
	· Eliminated existing biofilm on smooth glass surface after 72h of infection. 
· Revealed the possibility of removing biofilm on a clinically relevant smooth glass surface.

	
	E. coli
	ɸX174
	
	· 

	(D'Andrea et al., 2020)
	E. faecalis
	vB_EfaH_EF1TV
	96-well microtiter plates with TSB
	· Biofilm reduction observed in confocal laser scanning microscopy. 

	(Szymczak et al., 2020)

	B. bronchiseptica
	vB_BbrP_BB8
	96-well polystyrene microtiter plates with BHI medium

	· Led to 75%, 71%, and 59% of biofilm biomass reduction for phage concentrations of 107, 105, and 103 PFU/mL, respectively. 

	(Rizzo et al., 2020)
	MDR S. gallinarum
	UPF_BP1 and UPF_BP2
	96-well polystyrene plates with TSB medium
	· 85% of the biofilm strains were susceptible to at least one phage, while among those are 74% lysed by both phages.

	(Adnan et al., 2020)
	MDR P. aeruginosa 
	MA-1
	96-well plates with TSB medium
	· Led to 2.1 fold, 2,5 fold, and 3.2 fold reductions in biomass in 24, 48, and 72h biofilm, respectively.  

	(Morris et al., 2019)
	S. aureus
	StaPh_1, StaPh_3, StaPh_4, StaPh_11,  StaPh_16
	3D-printed, porous titanium cylindrical scaffolds. 
	· Led to log-CFU/cm2 biomass reduction of 6.8 to 6.2 after exposure to StaPhage cocktail, while a decrease in the thickness and area of the biofilm was also seen after 48 hours of cocktail exposure. 
· Demonstrated the possibility of removing biofilm on clinically relevant orthopedic material.

	(Gupta et al., 2019)
	E. coli, S. aureus, P. aeruginosa
	Bacteria-specific phages
	Human chronic non-healing wound
	· Led to significant improvement in wound healing among 20 patients after 3 to 5 doses of topical bacteriophage therapy, with 7 of the patients reaching complete healing after 21 days. 

	(Yuan et al., 2019)
	MDR P. aeruginosa 
	vB_PaeM_LS1
	Coverslips placed over a 6-well plate with LB medium

	· Eliminated existing biofilm 


	(Cha et al., 2019)
	MDR S. aureus
	CSA13
	96‐well polystyrene plate with TSB

	· Biofilms formed by MSSA and MRSA were reduced by 78% and 93% in its biomass after 24h of infection.

	(Jamal et al., 2019)
	MDR E. cloacae
	MJ2
	Stainless steel plates with TSB

	· Led to 2.8-. 3-, and 3.5-log reductions in biomass in 24, 72, and 120h biofilm, respectively. 

	(Gu et al., 2019)
	MDR uropathogenic E. coli
	vB_EcoP-EG1
	96-well plates with LB medium
	· Biofilms formed by MG1655 and 390G7 were reduced by 60% and 50% in its biomass after 24h of infection, respectively. 

	(Kwiatek et al., 2017)

	P. aeruginosa
	MAG1 and MAG4
	96-well microtiter plates
	· Led to 60% and 80% reduction in biofilm biomass when using MAG1 and MAG4 after 8h of infection, respectively. 
· MAG1 selected less for phage-resistant clones 
· The efficacy of the phage cocktail was similar to that of MAG4 alone

	(Shafique et al., 2017)

	P. aeruginosa
	JHP
	96-well polystyrene microtitre plates
	· Phage treatment before biofilm formation decreased bacterial cell counts for up to 9 logs (>95% removal) 

	(Alves et al., 2016)


	P. aeruginosa
	DL 52, DL 54, DL 60, DL 62, DL 64, DL 68
	96-well polystyrene microtitre plates

	· Static and dynamic biofilms were eradicated almost completely after 4h and 48h of phage cocktail infections, respectively. 
· Applied phage cocktail therapy on the dispersion of P. aeruginosa biofilm.

	(Lehman and Donlan, 2015)
	P. aeruginosa, P. mirabilis
	Bacteria-specific phages
	Artificial urine medium 
	· Led to log-CFU/cm2 biofilm reduction of 4 and 2 for P. aeruginosa and P. mirabilis biofilm after 48h of cocktail pretreatment, respectively.
· Demonstrated the significance of phage cocktail pretreatment on reducing mixed-species biofilm formed on a urinary catheter. 

	(Danis-Wlodarczyk et al., 2015)
	P. aeruginosa
	KTN28
	96-well microtiter plates with TSB medium
	· Led to a significant reduction of biofilm biomass in 24h, 48h, and 72h biofilm

	(Jamal et al., 2015)
	MDR K.pneumoniae
	Z
	96-well microtitre plates

	· Led to 2 fold, and 3 fold reductions in biomass in 24 and 48h biofilm, respectively.  

	(Nzakizwanayo et al., 2015)
	P. mirabilis
	Bacteria-specific Phages
	Bladder model (double-walled glass chamber) 
	· Led to a significant reduction in crystalline biofilm formation but not the number of planktonic cells.

	(Alves et al., 2014)
	S. aureus
	DRA88, K
	96-well polystyrene tissue culture microplates 

	· Biofilms formed separately by 15981, MRSA 252, H325 were either eradicated or disrupted by more than 50%  after 48h of infection at MOI of 10. 
· Applied phage cocktail therapy on the dispersion of S. aureus biofilm.

	(Yele et al., 2012)
	A. baumannii
	AB7-IBB1
	Abiotic surface (polystyrene);
biotic surface (human embryonic kidney 293 cell line)
	· 75% of the biofilms were removed from the abiotic surface at an MOI of 105 with 102 CFU/well. 
· 50% of the biofilms were inhibited from the biotic surfaces at an MOI of 103  with 102 CFU/well. 

	(Kelly et al., 2012)
	S. aureus
	K, and six modified derivatives (K.W73365, K.ST22ISA67, K.ST39ISA108, K.MS811, K.ST30ISA58, K.M255039)
	96-well microtiter plate with Trypticase soy broth (TSB) medium 
	· Led to a significant reduction in biofilm biomass after 72h of cocktail infection 
· Initial contact of the phage cocktail led to complete inhibition of biofilm formation over a 48h period with no indication of phage resistance

	(Kim et al., 2012)

	P. aeruginosa, S. aureus, S. epidermidis, Staphylococcus hominis (S. hominis)
	PA1Ø

	96-well microtiter plate 

	· The reductions of numbers in mixed bacteria cells in phage-treated biofilms were evident, while electron microscopy analysis also displayed biofilm removal activities
· Presented the board bactericidal spectrum of such phage and the possibility of using a single phage strain to treat mixed infections caused by multiple bacteria 

	(Son et al., 2010)
	S. aureus
	SAP-2
	96-well polystyrene microplate well

	· While phage showed its ability to erase biofilm, phage-derived endolysin SAL-2 expressed a broader spectrum of activity. 
· Shed light on the separate use of phage-derived enzymes. 

	(Curtin and Donlan, 2006)
	S. epidermidis 


	456
	Lubri-sil all-silicone 16 French Foley catheters

	· Led to log-CFU/cm2 biofilm reduction of 4.47 and 2.34 with and without supplemental divalent cations, respectively.  
· Pretreatment of phage on the catheter surface prevented biofilm formation.

	(Doolittle et al., 1995)
	E. coli 
	T4
	Polyvinyl chloride coupons placed in modified Robbins devices
	· Eliminated existing biofilm 
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