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Part A 

Definitions of Symbols, Abbreviations and Parameters  

Symbols and 

abbreviations 
Physical meaning 

𝐴 tail-beat amplitude 

AC alternative current 

CFD computational fluid dynamics 

CoM centre of mass 

∆𝜑 phase difference between two fish 

∆𝑋 lateral distance between two fish 

∆𝑌 longitudinal distance between two fish 

DC direct current of signal 

𝑓 frequency 

fref reference frequency 

FT Fourier transform 

FFT fast Fourier transform 

k dimensionless frequency, k=f/fref. k=1 component corresponds to tail-beat 

frequency, and k=0 corresponds to direct-current (DC) component. 

𝐿 length of the fish model, used as reference length 

𝑙 dimensionless distance from the snout along the longitudinal axis, 𝑙 ∈ [0,1] 

𝑚 mass of fish model 

Re Reynolds number based on body length and swimming speed 

𝑡 time 

𝑡P period 

𝑈 cycle-averaged swimming speed 

𝜆 length of the body wave 

𝜇 viscosity of water 

𝜌 density of water 
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Table S2. Reference values. 

 

Parameter Value 

density of water (𝜌w) 1.00×103 kg•m-3 

viscosity of water (𝜇w) 8.71×10-4 kg•m-1•s-1 

length of fish (𝐿) 4.0×10-2 m  

reference frequency (fref) 8 Hz 

reference speed (𝑈ref) 0.095 m•s-1 
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Part B Additional Results 

 

Fig. S1 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

at lateral distance 0.35L and ∆𝜑 = 0 (in-phase). One stress unit=10 Pa.  
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Fig. S2 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

at lateral distance 0.5L and ∆𝜑 = 0 (in-phase). One stress unit=10 Pa. 
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Fig. S3 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

at lateral distance 0.75L and ∆𝜑 = 0 (in-phase). One stress unit=10 Pa. 
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Fig. S4 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

at lateral distance 1L and ∆𝜑 = 0 (in-phase). One stress unit=10 Pa. 
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Fig. S5 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

at lateral distance 0.35L and ∆𝜑 =
1

2
𝜋. One stress unit=10 Pa.  
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Fig. S6 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

at lateral distance 0.35L and ∆𝜑 = 𝜋. One stress unit=10 Pa. 
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Fig. S7 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

at lateral distance 0.35L and ∆𝜑 =
3

2
𝜋. One stress unit=10 Pa. 
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Fig. S8 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

in diagonal front. One stress unit=10 Pa. 

 



 12 / 21 

 

 
Fig. S9 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

in diagonal rear. One stress unit=10 Pa.  
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Fig. S10 Results of frequency domain analysis for lateral line sensing when a neighbor fish swim 

in front. One stress unit=10 Pa.  
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Fig. S11 Results of frequency domain analysis for lateral line sensing when an alongside 

neighbor fish swim with doubled frequency. One stress unit=10 Pa.  
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Part C Computational Model Information 

C-1 Computational grids 

As shown by  ig. 1 , the computational model is a multi-blocked, overset-grid system 

comprising a body-fitted grid and a global grid to model the flow patterns generated by the fish 

with sufficient resolution both in the near and the far field.  he innermost surface of the body-

fitted grid represents the surface model of fish.  he radial width of body-fitted grid was defined 

to be less or equal to one third of the body length of the fish model.  he body grid had  0 radial 

layers, with the radial width of the innermost layer adjacent to the body surface defined to be ≤ 

0.1L/√Re, an empirical formula ensuring that the grid resolution near the fish body is suitably 

accurate for the flow condition, where L is the body length of the fish and Re is the Reynolds 

number.  urthermore, the radial width of the body-fitted grid at each time step was co-determined 

by body curvature to accommodate the strong body deformations—radial width varied in order 

to avoid overlap between nearby grid cells.  o simulate the flow around the fish, the body-fitted 

grid was updated at each time step. In previous studies ( i et al.,  01 ,  014,  01 ), we verified 

the necessary density (the number of cells per unit space) of the body-fitted grid.  he global grid 

possesses a similar density as the outer layer of the body-fitted grid where the two grids overlap. 

 o avoid artefacts at the external boundaries of the global grid on the solution around the fish, we 

performed a sensitivity analysis in our previous study ( i et al.,  01 ) to ensure that we used a 

sufficiently large computational domain.  
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Figure S12. Computational grid system. A multi-blocked, overset-grid system comprises a body-fitted mesh 

(yellow) generated from surface model (97×133), dimension for simulations: 97×133×20, and a global mesh 

(white), which is taken sufficiently large to allow accurate simulations of the fish in terms of wake topology. 

 

 

C-2 Body length correction algorithm  

 he sinusoidal functions driving the deformation fish causes the total body length along the 

midline to vary during the tail beat.  his variation is corrected at every time step by a procedure 

that preserves the lateral excursion while ensuring that the body length remains constant. figure 

 13 explains the procedure of this correction:  
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An axis (green axis in figure  13) is first generated according to the sinusoidal function.  he 

length of this axis exceeds the actual body length.  hen, in the longitudinal direction the green 

axis is linearly contracted until it reaches the actual length, while the lateral excursion is preserved. 

 he corrected axis is used as the body shape of the fish in the simulation at this time step. 

 

 

Figure S13. Body length variation caused by deformation is corrected by a procedure that preserves the 

lateral excursion while ensuring a constant body length. 

 

 

C-3 Fluid solution 

 he fluid module provides fortified solutions to the three-dimensional  avier- tokes (  ) 

equations in an inertial frame of reference.  he solving process is implemented using the finite 

volume method ( VM), based on a multi-block, overset mesh system and inter-block 

communication algorithm.  

 he governing equations for the fluid solution are the three-dimensional, incompressible and 

unsteady    equations written in strongly conservative form for mass and momentum ( iu,  009). 

 o accelerate the computation and improve the robustness during iteration, the artificial 

compressibility method is adopted by adding a pseudo time derivative of pressure to the continuity 

equation ( iu,  009).  he governing equations for an arbitrary deformable control volume 𝑉 are 

∫ (
𝜕𝐐

𝜕𝑡
 

𝜕𝐪

𝜕𝜏
)

𝑉

𝑑𝑉  ∫ (
𝜕𝐅

𝜕𝑥
 

𝜕𝐆

𝜕𝑦
 

𝜕𝐇

𝜕𝑧
 

𝜕𝐅𝝂

𝜕𝑥
 

𝜕𝐆𝝂

𝜕𝑦
 

𝜕𝐇

𝜕𝑧
)

𝑉

𝑑𝑉 = 0  

where 
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𝐐 = [

𝑢
𝑣
𝑤
0

], 𝐪 = [

𝑢
𝑣
𝑤
𝑝

], 𝐅 = [

𝑢2  𝑝
𝑢𝑣
𝑢𝑤
𝜆𝑢

],  𝐆 = [

𝑣𝑢
𝑣2  𝑝
𝑣𝑤
𝜆𝑣

], 𝐇 = [

𝑤𝑢
𝑤𝑣

𝑤2  𝑝
𝜆𝑤

], 

𝐅𝐯 = −
𝟏

𝑅𝑒
[

 𝑢𝑥

𝑢𝑦  𝑣𝑥

𝑢𝑧  𝑤𝑥

0

],  𝐆𝒗 = −
𝟏

𝑅𝑒
[

𝑣𝑥  𝑢𝑦

 𝑣𝑦

𝑣𝑧  𝑤𝑦

0

], 𝐇𝒗 = −
𝟏

𝑅𝑒
[

𝑤𝑥  𝑢𝑧

𝑤𝑦  𝑣𝑧

 𝑤𝑧

0

], 

and 𝑢, 𝑣, and 𝑤 are velocity components respectively in X-, Y- and Z-directions of the Cartesian 

coordinate system; velocity components with subscripts 𝑥 , 𝑦 , and 𝑧  are velocity gradients 

respectively in X-, Y-, and Z-directions of the Cartesian coordinate system; 𝑝 is the pressure; 𝜆 

is the pseudo-compressibility coefficient; the set of equations modified from the incompressible 

 avier- tokes equations can be solved implicitly by marching in pseudo time: 𝑡  denotes the 

physical time, 𝜏 denotes the pseudo time, and the term 𝐪 associated with the pseudo time is 

designed for an inner-iteration inside each physical time step, and will vanish when the divergence 

of velocity is driven to zero so as to satisfy the equation of continuity. By introducing the Reynolds 

transport theorem and employing the Gauss integration theorem, an integrated form of the  avier-

 tokes equations in general curvilinear coordinate system corresponding to the  VM structural 

mesh is gained as 

𝜕

𝜕𝑡
∫𝐐
𝑉

𝑑𝑉  ∫
𝜕𝐪

𝜕𝜏𝑉

𝑑𝑉  ∮ 𝐟 − 𝐐𝐔𝑉 ∙ 𝐧
𝑆

𝑑𝑆 = 0 , 

Where 𝐟 =  𝐅  𝐅𝑣 , 𝐆  𝐆𝑣 , 𝐇  𝐇𝑣 ,  ; the control volume V is a hexahedral cell, while S denotes 

the surfaces of the hexahedral cell; n = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)  is the unit outward normal vector 

corresponding to all the surfaces of the hexahedral cell; 𝐔𝑉 is the local velocity of the moving 

cell surface caused by displacement and deformation of the cell.  or a structured, three-

dimensional mesh system (ξ -, η -, and ζ -dimensions respectively represent each of the three 

dimensions of mesh) and cell-centered storage architecture, A semi-discreate form can be further 

derived: 

𝜕

𝜕𝑡
 𝐐𝑉 𝑖𝑗𝑘  (

𝜕𝐪

𝜕𝜏
)
𝑖𝑗𝑘

𝑉𝑖𝑗𝑘  𝐑𝑖𝑗𝑘 = 0 , 

where  

𝐑𝑖𝑗𝑘 = (�̂�  �̂�𝒗)𝑖+1
2
,𝑗,𝑘

− (�̂�  �̂�𝒗)𝑖−1
2
,𝑗,𝑘

 (𝐆  𝐆𝒗)𝑖,𝑗+1
2
,𝑘

− (𝐆  𝐆𝒗)𝑖,𝑗−1
2
,𝑘

 (�̂�  �̂�𝒗)𝑖,𝑗,𝑘+
1
2
− (𝑯  �̂�𝒗)𝑖,𝑗,𝑘−

1
2
 

�̂�  �̂�𝒗 =  𝐟 − 𝐐𝐔𝑉 ∙ 𝐒𝐧, 𝐆  𝐆𝒗 =  𝐟 − 𝐐𝐔𝑉 ∙ 𝐒𝐧, �̂�  �̂�𝒗 =  𝐟 − 𝐐𝐔𝑉 ∙ 𝐒𝐧, 

𝐒𝐧 = [𝑆nx, 𝑆ny, 𝑆nz] = 𝐧 ∙ 𝑆 

𝑖 , 𝑗 , and 𝑘  are cell indexes respectively in ξ -, η -, and ζ -dimensions in the boundary-fitted 

curvilinear coordinate system, while “ 
1

2
   and “−

1

2
   denote the surface location (e.g. 𝑖  

1

2
 

denotes a surface locates on the positive ξ -direction of the hexahedral cell V); �̂� , 𝐆  and �̂� 

denote inviscid flux in ξ -, η -, and ζ -directions, respectively; �̂�𝒗 , 𝐆𝒗  and �̂�𝒗  denote viscous 

flux in ξ-, η-, and ζ-directions, respectively;  or each surface of the hexahedral cell, 𝐒𝐧 denotes 

a vector consisting of projected areas of present surface in X-, Y-, and Z-directions, respectively; 

𝐧 is the unit outward normal vector of the present surface in the Cartesian coordinate system, and 
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S is the area of the present surface. 

 

 

C-4 Boundary conditions and inter-block communications  

 he computational mesh consists of two blocks as shown in figure  1 : one is surrounding the 

fish body, deforming and moving with the fish and constructed in a body-fitted curvilinear 

coordinate system (ξ -,  η -, and ζ -dimensions are circumferential, axial and radial directions 

relative to the fish body, respectively); the other is a static background block, of which the ξ-, η-, 

and ζ-dimensions, respectively, overlap the X-, Y-, and Z-dimensions of the Cartesian coordinate 

system. 

 he    equations are solved in each block.  he boundary conditions for the    equations are: 1) 

in the fish-body-fitted mesh, the non-slip condition is applied to the cells on the surface of  the fish 

body; 2) in the global mesh, an incoming flow 𝑈 is set for frontal surface, while zero-gradient 

condition is used for other surface; 3) at the interfaces between fish-body-fitted and global meshs, 

the two meshs provide boundary conditions to each other through interpolations. 

 

Table S4. Locations of additional information regarding the computational approach. 

specific information relevant publication 

methods 

numerical solutions to  avier- tokes 

equations 
( iu,  009) 

multi-blocked, overset-grid system  

and inter-block interpolation  
( iu,  009;  i et al.,  01 ) 

inter-body cell ( i et al.,  01 ) (in supplementary materials) 

validations 

mesh density independence test 

( i et al.,  014) (in supplementary materials) 

 ote: in this study the resolution based on 

grid density is higher than that in ( i et al., 

 014) 

mesh size independence test ( i et al.,  01 ) (in supplementary materials) 

validation on hydrodynamic solution 

on an oscillating cylinder, compared 

with experiment 

( i et al.,  014)(in supplementary materials) 

validation on flow field 

on swimming fish, compared with 

 IV 

( i et al.,  01 ,  01 ) 

validation on motion solution 

on swimming fish, compared with 

experiment 

( i et al.,  01 ,  014) 
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C-5 Fast Fourier Transform (FFT)  

A frequency-domain representation includes a frequency-domain graph showing how much of the 

signal lies within each given frequency band over a range of frequencies, as well as the phase shift of 

each sinusoid, in order to be able to recombine the frequency components to recover the original time 

signal. 

 he lateral-line stress signal X during an arbitrary tail-beat cycle is sampled and processed by a 

fast  ourier transform (   ) algorithm (function: fft, MA  AB R 0 0b,  he Mathworks), which 

computes the discrete  ourier transform (D  , ( rigo and Johnson 1998)) of signal vector X: 

Y = fft(X) 

where 𝐘 =  𝑦0, 𝑦1, … , 𝑦𝑁−1 . 𝑦0, 𝑦1, … , 𝑦𝑁−1 are complex numbers that define the D   formula 

y𝑘 = ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

        𝑘 = 0,1,… ,𝑁 − 1, 

𝑒𝑖2𝜋/𝑁 is a primitive  th root of 1, N the signal length and   is the dimensionless frequency used in 

this study, computed by   = f/fref, where the  =1 component corresponds to that in tail-beat frequency, 

and  =0 corresponds to the direct current component. We will use in the paper the direct current (DC), 

alternating current (AC) nomenclature.  

 he two-sided spectrum 𝐏two−side is computed as: 

  𝐏two−side = |
𝐘

𝑁
|                                     

We show only the positive half of the frequency spectrum because the spectrum of the stress signal is 

symmetrical around the DC component (𝑓 = 0).  he single-sided spectrum P is computed as: 

𝑃 𝑘 = signum 𝑦0 ∙ 𝑃two−side 𝑘 ,     𝑘 = 0  𝐷𝐶  

𝑃 𝑘 =  𝑃two−side 𝑘 ,   𝑘 = 1 to
𝑁

 
− 1  𝐴𝐶  

Note that for the DC component, we preserve the sign of 𝑦0 since the negativity of the DC component 

possesses a physical meaning (negative stress). The remainder of the two-sided spectrum 𝐏two−side, 

𝑁

2
 to 𝑁, is discarded.  

 he phase of each component of Y is also computed (using the MA  AB function angle). 

  

https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Sine_wave
https://ww2.mathworks.cn/help/matlab/ref/fft.html?lang=en#f83-998360-Y
https://ww2.mathworks.cn/help/matlab/ref/fft.html?lang=en#f83-998360-X
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