
Supplementary Material

1 ALTERNATIVE GRAPH CONSTRUCTION
In this supplementary material, we investigate an alternative graph construction to show how the algorithm
may be applied in different particle tracking settings, specifically for pT > 1 GeV graphs. The graph
construction restrictions are z0 < 350 mm and ∆φ/∆r < 0.0007 and pmin

T = 1 GeV. Each event is divided
into 8 φ sectors, and 8 η sectors. Example graphs for 2 sectors in one event are shown in Fig. S1.
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Figure S1. Example graphs showing 2 of the sectors for one event with pmin
T = 1 GeV, z0 < 350 mm,

∆φ/∆r < 0.0007, 8 φ sectors, and 8 η sectors. True track segments are denoted by blue edges, while false
track segments are denoted by gray.

The efficiency and purity of the graph construction method are shown for different choices for the number
of φ and η sectors in Fig. S2 based on 50 events in train 1. In particular for 8 phi sectors and 8 η sectors,
the graphs retain an efficiency of 97% and a purity of 50%.

Figure S3 shows the 95th percentile for the number of nodes and edges in each sector depending on the
number of sectors chosen. For example, the average 95th percentile graph size for 8 φ sectors and 8 η
sectors is 162 nodes and 326 edges for this graph construction. However, we note the distribution of nodes
and edges depends on the particular |η| range of the sector.

Figure S4 shows the AUC values for the 1 GeV graphs as a function of the total bit precision, where half
of the available bits are used for the integer part and the other half are used for the fractional part. Different
from the 2 GeV task, we see that with 16 total bits, we reproduce the 32-bit floating point model when
applying the ap fixed<X,X/2> PTQ scheme.
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Figure S2. Efficiency (left) and purity (purity) of the 1 GeV hitgraphs studied for different numbers of η
and φ sectors based on 50 events in train 1.
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Figure S3. 95th percentile of the number of nodes and edges in each sector for the 1 GeV graphs as a
function of the number of η and φ sectors, based on 50 events in train 1.

2 QUANTIZATION-AWARE TRAINING
Additional interaction network models were trained at different bit widths using the BREVITAS library to
illustrate benefits of QAT. BREVITAS uses a scaled integer quantization scheme compared to the fixed-point
precision scheme of hls4ml, however we expect the hardware resources and timing to be comparable
for the same number of total bits. BREVITAS implements scaled integer quantization by assigning a zero
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Figure S4. AUC values as a function of the total bit width X when using ap fixed<X,X/2> with
sectorized 1 GeV input graphs truncated at 162 nodes, 326 edges, corresponding to the 95% percentile
graph size. The performance is evaluated with 1000 graphs from train 2. With precision greater than
ap fixed<16,8>, the AUC closely approximates the full floating point model.

point and scale factor for all of the inputs and activations. From there, the inputs and activations can be
shifted and scaled to fit within the integer range defined by the bit width of the quantization. In the case
that an input or activation exceeds the minimum or maximum value of the scaled integer range, the value
is clamped at the boundary. As illustrated in the main text, the network retains the full performance even
down to 7 total bits. PTQ will inherently reduce accuracy due to the loss of information that occurs when
converting from the floating-point representation to the fixed-point or scaled integer representation. QAT
allows for optimization while taking the loss of precision into account, allowing the network to train around
the loss in precision and maintain accuracy. For this study, QAT models with bit widths from 2 to 18 were
trained using the same training set (train 1) and evaluated on the same testing set (train 2) as the
PTQ models to generate ROC curves and calculate the AUC at different bit widths.
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