
Supplementary Table 1 Behavioral tests in contemporary use. Frequency of use was evaluated for the period 2010-2012 where “Low” means less than five 
publications/year, “Medium” five to twenty publication/year and “High” more than twenty publications/year. Year introduced refers to the first description 
of the test in rodents. In some cases, marked with *, a definite first description could not be located, and the oldest description found is used instead. The 
references include initial descriptions and reviews of the tests as well as publications evaluating parameter settings or contain detailed protocols, pictures or 
films of the tests. The tests in the table were primarily identified using reviews on functional evaluation in major disease models with additional test 
identified when searching for references of already identified tests. The list aims to be exhaustive and any omissions are purely unintentional and should not 
be seen an indication of low quality. Due to the large number of existing test, and the fact that new tests are continuously developed, there may be useful 
tests which are not mentioned in this table. FOU Frequency of use, Aka, Also known as. 

Test Domain FOU Year Description 
0-maze  See Zero maze 
5-choice continuous 
performance task1,2 

Attention Low 2009 In the majority of trials the animal has to nose-poke in one of five possible 
locations identified by a brief visual stimulus to receive a reward. In a subset 
of trials all five locations display the visual stimulus and the animal has to 
withhold action in these trials to receive the reward. Also see 5-choice serial 
reaction task. 

5-choice serial 
reaction task3–9 

Attention Medium 1983 Guided by a brief visual stimulus the animal nose-pokes in one out of five 
holes and correct choices are rewarded. Since the visual stimulus is only 
presented briefly, animals with attention deficits will have impaired 
performances. Also see 5-choice continuous performance task. 

Acetone test10,11 Nociception Medium 1994* The test evaluates the cold-evoked response caused by application of a drop 
of acetone to the animals’ skin, which reduces temperature due to 
evaporation.  

Acoustic startle12–22 Reflexive behavior High 1939* The startle response induced by a sudden loud acoustic stimulus is assessed. 
Also see Prepulse inhibition and Tactile startle. 

Active avoidance  See One-way active avoidance, Passive avoidance and Shuttle-box 
Adhesive removal 
test23–26 

Sensory-motor 
function, 
Laterality 

Medium 1982 The time to initiation and to successful removal of an adhesive tape placed 
on the animal’s forepaws is noted. By using adhesive tape patches of 
different size for each forepaw, asymmetry caused by unilateral 
impairments can be graded. Optionally, the adhesive tape is placed on the 
hind paws or snout. Aka Bilateral tactile stimulation test, Sticky tape test 
and Sticky paper test. 



Angle board  See Inclined plane 
Ankle-bend test27–29 Nociception Low 1987* The amount of squeaks and struggle during paw manipulation is assessed. 

This test is mainly used in arthritis models. Also see Knee-bend test. 
Attentional set-
shifting30–38 

Learning and 
memory, 
Cognitive 
flexibility 

Low 1998* The ability of an animal to locate a buried reward, located in one out of 
several cups filled with a digging medium, is analyzed.  The correct location 
can be based on the type of digging medium or its scent, cup surface 
texture or cup location. The protocol can be modified to allow both intra- 
and extra dimensional set shifts as well as delayed non-matching to sample 
testing. Also see Dig task, Odor span task and Spatial span task. 

Autoshaping39–43 Learning and 
memory 

Medium 1974* When a spatially localized sensory cue is used in Pavlovian conditioning the 
animal tends to approach and interact with the source of the cue which is 
utilized in autoshaping procedures. The sensory cue is initiated on a variable 
schedule and lasts for a set time interval. If the animal interacts with the 
source of the sensory cue the reward is delivered immediately and 
otherwise at the end of the preset time interval. These procedures are 
therefore often described as a mix between Pavlovian and operant 
conditioning. 

Balance beam44–47 Sensory-motor 
function 

High 1976* The time the animal is able to remain on a narrow, elevated beam without 
falling down is measured. Aka Beam balance, Dowel test and Fixed bar test. 
Also see Beam walk and Ledged tapered beam. 

Barbering48–53 Social status, 
Obsessive-
compulsive like 
behavior 

Low 1972* The behavior of dominant animals to remove whiskers and/or fur from 
submissive animals is evaluated to determine social status. Excessive 
barbering may also be interpreted as an obsessive-compulsive like behavior. 
Aka Whisker trimming and Dalila effect.  

Bar test54–58 Catalepsy Medium 1972* The animal’s forepaws are placed on a bar and the time it retains this 
position is recorded.  

Barnes maze59–64 Visuo-spatial 
learning and 
memory 

High 1979 The test is performed using a brightly lit circular arena where one of several 
openings leads to an escape route. The time required to locate the escape 
route during repeated testing is used to evaluate learning and memory. Aka 
Circular platform maze. 

  



Basso, Beattie, 
Bresnahan (BBB) 
Locomotor Rating 
Scale65–70 

Neurological 
function, Gait 

Medium 1995 A 21 point categorical scale used to assess locomotion in the open field 
following spinal cord injury. Aka BBB scale. Also see Basso Mouse Scale for 
Locomotion (BMS). 

Basso Mouse Scale 
for Locomotion 
(BMS)71 

Neurological 
function, Gait 

Medium 2006 A 9 point categorical scale used to assess locomotion in mice following 
spinal cord injury. Also see Basso, Beattie, Bresnahan (BBB) Locomotor 
Rating Scale. 

Baton test72,73 Sensory-motor 
function 

Low 2008* The mouse is held by the tail and the ability to grasp a vertically held 
applicator stick is evaluated.  

BBB scale  See Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale 
Beam balance  See Balance beam 
Beam walk74–77 Sensory-motor 

function 
Medium 1982* The time required to traverse a narrow beam to reach a goal box is 

evaluated. Optionally, vertical pegs may be placed along the beam to 
increase test difficulty. Also see Balance beam and Ledged tapered beam. 

Bederson scale  See Neurological score 
Behavioral 
sensitization 

 See Locomotor sensitization 

Bilateral tactile 
stimulation test 

 See Adhesive removal test 

Bin cotton use  See Nest building 
Block test 
(catalepsy)78–80 

Catalepsy Low 1981* The animal is placed on top of a small block and the time to descend from it 
is measured.  

Block test (odor)81–84 Olfaction, Social 
interactions 

Low 2006* The time the animal spends investigating a wooden block scented with its 
own bedding and another block scented with another animal’s bedding is 
measured.  

Bowl test  See Rotometer 
Bracing test  See Lateral pulsion 
Buried food test85–87 Olfaction Low 1971 The latency to locate a food item hidden under bedding material is used to 

assess olfactory abilities. Aka Buried pellet test. 
Buried pellet test  See Buried food test 
Burrowing88–91 Species-typical 

behavior 
Medium 2001* The test determines to what extent the animal removes material from a 

tube to create a burrow.  
  



Capellini handling 
test 

 See Pasta handling 

CatWalk92–102 Gait, Nociception Medium 1999* The animal walks on top of a horizontal transparent pane. Light enters the 
pane from the side and can only leave the pane at points of paw contact 
which illuminates the paws and the animal can be filmed from below to 
record the gait pattern. Limb pain may also be detected by this test if it 
alters the gait pattern. Also see Paw print analysis. 

Challenging beam  See Ledged tapered beam 
Cheeseboard maze  See Holeboard 
Chimney test103,104 Sensory-motor 

function 
Medium 1960 The animal is introduced into a narrow horizontal plastic tube. As soon as 

the animal almost has reached the other end of the tube, it is turned to a 
vertical position and the animal is now facing head down. The normal 
response for the animal is to start backing out of the tube.  

Circle exit test  See Exit circle test 
Circular platform 
maze 

 See Barnes maze 

Cliff avoidance105–107 Developmental 
stage 

Medium 1975* The time it takes for a pup to back away after it is placed with its head and 
forelimbs hanging over a cliff is recorded.  

Coat hanger test108–

110 
Sensory-motor 
function 

Low 1992* The ability to remain on or climb to the top of a wire coat hanger is 
evaluated.  

Coherent motion 
detection111–113 

Vision Low 2006 A number of dots are moving randomly on a computer screen while a small 
subset of them coherently move either left or right. The animal has to 
detect the direction of the coherent motion and respond correctly to it in 
order to receive a reward.  

Cold plate114–119 Nociception Medium 1988* Cold-induced behavior is assessed by placing the animal on a cold plate. 
Also see Double plate and Hot plate. 

Collins test  See Paw preference testing 
Composite 
neuroscore 

 See Neurological score 

  



Conditioned place 
preference120–132 

Substance 
dependence 

High 1957 The animal is administered a rewarding substance and placed in a test 
chamber and is then administered vehicle and placed in a second test 
chamber. The animal is then allowed free access to both chambers to see 
which one it prefers by comparing the time spent in each chamber. The use 
of aversive substances or drug withdrawal may cause a conditioned place 
aversion.  

Conditioned odor 
aversion 

 See Conditioned taste aversion 

Conditioned taste 
aversion133–144 

Learning and 
memory 

High 1955 The animal is presented with, and consumes, a novel food/fluid and is 
thereafter administered a test substance/treatment. If the test 
substance/treatment has aversive effects the animal may associate the 
novel food/fluid with the aversive effects and avoid the food/fluid on future 
presentations if it has an intact learning and memory capacity. The novel 
food/fluid is usually recognized by its taste but odor can also be used which 
creates a conditioned odor aversion.  

Cork test145–147 Catalepsy Low 1979* The animal is placed with each paw on top of a cork and the time it retains 
this position is recorded.  

Corner test23,148–150 Sensory-motor 
function, 
Laterality 

Low 2002 The animal approaches and rears into a corner and the direction it turns to 
following the rear is evaluated. Unilateral impairments in the whisker 
sensory system may influence turning direction.  

Cross maze151–157 Visuo-spatial 
learning and 
memory, 
Cognitive 
flexibility 

Low 1974* A maze shaped like a cross and can for example be used to evaluate spatial 
learning, procedural learning and to implement rule shifting tasks. The maze 
can also be filled with water (Water cross maze). 

Cylinder test158–162 Sensory-motor 
function, 
Laterality 

Medium 2000 The animal is placed in a transparent cylinder and the rearing behavior is 
evaluated. Asymmetry in forelimb use during rearing indicates unilateral 
motor impairments. Aka Spontaneous forelimb use (Fig 2B). 

Dalila effect  See Barbering 
  



Delayed 
alternation163–165 

Learning and 
memory, Working 
memory 

Medium 1957* The animal first performs one of two possible actions, for example turning 
left or right in a T-maze. After a delay it has to make the alternate choice to 
receive a reward. Delayed alternation tasks can be performed in mazes 
(spatial delayed alternation) and operant chambers (operant delayed 
alternation). 

Dig task33,37 Learning and 
memory 

Low 2012 The animal is presented with two cups filled with digging media, although 
only one contains a reward, and therefore has to rely on olfactory cues to 
identify the correct cup (Fig 2D). Also see Attentional set-shifting, Odor span 
task and Spatial span task. 

Digging for rewards  See Attentional set-shifting, Dig task, Odor span task and Spatial span task. 
Distractor sustained 
attention task 

 See Sustained attention task 

Double plate118 Nociception Low 2006 The time spent on each plate is measure in an arena with one cold plate and 
one plate at room temperature which the animal can freely move between. 
Also see Cold plate and Hot plate. 

Dowel test  See Balance beam 
Drug 
discrimination166–185 

Substance 
dependence 

Medium 1951* The animal is injected with either drug or vehicle and placed in an operant 
chamber with two levers. One lever results in a food reward only following 
drug injection and the other only following vehicle injection. Following 
extensive training, the animal learns the correct response. By then injecting 
the animal with another drug, its similarity with the first drug can be 
assessed. The ability of a compound to block the effect of the injected drug 
can also be evaluated.  

Elevated open 
platform186–188 

Stress response, 
Anxiety-like 
behavior 

Low 1979* The animal is placed on an inescapable elevated open platform to either 
induce a stress response or to assess anxiety-like behavior.  

Elevated plus 
maze189–215 

Anxiety-like 
behavior 

High 1985 The time spent in closed (safe) versus open (unsafe) arms, and transitions 
between them, is used as a measure of anxiety-like behavior. Also see 
Graded anxiety test and Zero maze. 

Elevated T-maze216–

225 
Anxiety-like 
behavior, Learning 
and memory 

Medium 1993 A T-maze with one enclosed and two open arms is used to assess both 
anxiety-like behavior as well as memory and learning. Also see Elevated plus 
maze and T-maze. 

  



Emergence test226–

228 
Anxiety-like 
behavior 

Low 1986* The time before the animal leaves a safe start box to explore a novel open 
field is used to evaluate anxiety-like behavior. Also see Light-Dark box and 
Open field. 

Exit circle test229,230 Locomotor activity Low 1988* The test measures the time needed to exit a 20 to 50 cm diameter circle 
surrounded by a wall with a single opening. Aka Circle exit test. 

Fear conditioning 
and extinction231–247 

Learning and 
memory, 
Associative 
learning 

High 1941* The response when exposed to a sensory cue, usually an auditory tone, 
followed by an aversive event such as an electric foot shock is evaluated. If 
the animal makes an association between the two events it displays a fear 
response, typically freezing, when re-exposed to the sensory cue or the 
context it was delivered in. Repeated exposure to the sensory cue in the 
absence of the aversive event leads to extinction of the fear response.  

Fixed bar test  See Balance beam 
Floor projection 
maze248 

Vision assessment Low 2009 Visual information presented on the floor of a maze is used to evaluate 
visual function. 

Food carrying  See Hoarding 
Food competition 
test249–254 

Social status, 
Social interactions 

Low 1972* Social status is determined by assessing the animals’ behavior when 
competing for desirable food items.  

Forced swim test255–

272 
Depressive-like 
behavior 

High 1977 The time spent trying to escape versus floating in a small water tank with no 
escape route is measured. A low level of escape behavior is considered to 
be a depressive-like behavior. Aka Porsolt test. 

Forelimb flexion273–

276 
Neurological 
function, 
Laterality 

Medium 1986* The ability to extend both forelimbs to break an anticipated fall when 
suspended by the tail above a surface is evaluated. Neurologically intact 
animals will extend both forelimbs symmetrically.  

Forelimb locomotor 
assessment scale 
(FLAS)277 

Gait Low 2009 A qualitative scale used to assess gait patterns following cervical spinal cord 
injury.  

Forelimb placing  See Vibrissae-evoked forelimb placing 
Formalin test278–307 Nociception High 1977 Pain-evoked behavior following formalin forepaw, orofacial or tail injection 

is assessed.  
  



Four plate test308–310 Anxiety-like 
behavior 

Low 1971 An animal is placed in a cage where the floor consists of four metal plates 
separated by a small distance and the number of crossing between plates is 
counted. Every time the animal crosses from one plate to another, it 
receives a foot shock which creates a conflict between exploratory behavior 
and avoidance of foot shocks. Also see Geller-Seifter conflict test and Vogel 
conflict test. 

Frey filaments, von  See von Frey filaments 
Functional 
neuroscore 

 See Neurological score 

Gait kinematics311–

319 
Gait Medium 1993* The gait pattern when walking or wading is evaluated when the animal is 

viewed from the side, aided by a high-speed video camera and reflective 
disks attached to the animal. Optionally, X-ray video recordings may be 
used to visualize the skeleton.  

Gap crossing320–322 Sensory function Low 1986* The ability to move between two platforms in the dark is used to assess the 
function of the whisker sensory system.  

Geller-Seifter 
conflict test202,323–325 

Anxiety-like 
behavior 

Low 1960 The test determines the behavior evoked when lever pressing results in 
both a food reward and occasionally a mild electric shock. Also see Four 
plate test and Vogel conflict test. 

Graded anxiety 
test326 

Anxiety-like 
behavior 

Low 2002 A combination of the Elevated plus maze and Light-dark box with several 
compartments gradually transitioning from safe to risky. Also see Successive 
alleys. 

Grid performance 
test 

 See Inverted grid 

Grid walk95,159,327–330 Sensory-motor 
function 

Medium 1987* The number of foot slips made by an animal walking on top of an elevated 
horizontal grid is recorded. Optionally, the grid can be tilted. Also see 
Ladder rung walk. 

Grip strength331–336 Sensory-motor 
function 

High 1978* The test measures the maximum force exerted by an animal on a bar it 
holds on to while being pulled backwards by the base of its tail. Can be 
modified for individual measurement of each forepaw to assess unilateral 
impairments. Also see Wire grip and Inverted grid. 

Grooming 
evaluation337–348 

Species-typical 
behavior 

Medium 1960* The quality and/or amount of grooming are evaluated. Grooming may be 
evoked by swimming or water application.  

Gross neuroscore  See Neurological score 



Gustatory 
neophobia349–355 

Species-typical 
behavior, Learning 
and memory, 
Anxiety-like 
behavior 

Low 1963* The test determines to what extent the animal displays the normal rodent 
behavior of initially avoiding, but eventually accepting, novel types of food. 
Attenuation of gustatory neophobia during repeated exposure requires 
intact learning and memory. Gustatory neophobia may also be considered 
to be an anxiety-like behavior. Aka Hyponeophagia. 

Hargreaves test356–

360 
Nociception High 1988 A beam of light is directed to the animal’s hind paw and the withdrawal 

latency is measured. Aka Plantar test. 
Head twitch 
response361–366 

Drug induced 
behavior 

Medium 1956 Administration of various hallucinogenic drugs induces rapid side-to-side 
twitching of the animals head. The response frequency can be evaluated by 
manual observation, either directly or using video recordings. The head 
twitch responses can also be automatically assessed by measuring voltage 
changes caused by the movement of a small magnet attached to the skull of 
the animal. Also see Locomotor sensitization. 

Hoarding91,367–384 Species-typical 
behavior 

Low 1939* The test determines to what extent the animal retrieves food from an 
external location and hoards it near its nest. Aka Food carrying. 

Holeboard385–396 Exploratory 
behavior, Learning 
and memory 

Medium 1962 The extent of exploratory head dips into the holes of an arena with several 
small holes in the floor is used to assess exploratory behavior. Optionally, 
certain holes may be baited with food pellets to determine if the animal 
learns and remembers the location of the baited holes upon repetition.  

Horizontal ladder  See Ladder rung walk 
Horizontal rope 
walking397–399 

Sensory-motor 
function 

Low 2001* The number of foot slips made when crossing a horizontally suspended rope 
by walking on top of it is determined. Aka Rope walking. 

Hot plate305,400–411 Nociception High 1944 Latency to initiate paw-licking and escape behavior when placed on a hot 
surface is measured. Also see Cold plate and Double plate. 

Hyponeophagia  See Gustatory neophobia 
Inclined ladder  See Ladder climb 
Inclined 
plane276,412,413 

Sensory-motor 
function, 
Laterality 

Medium 1977 The animal is placed on a horizontal plane which is gradually turned towards 
the vertical position. The angle the plane is at when the animal loses its grip 
is recorded. The animal is placed so that either its left or right side is facing 
down when the plane is inclined. Aka Angle board. 

IntelliCage414–417 Learning and 
memory 

Medium 2005* Various tests of learning and memory are carried out in a large cage which 
serves as both test device and animal housing.  

  



Inverted grid418–420 Sensory-motor 
function 

Low 1977 The animal is placed on top of a horizontal grid which is then turned upside 
down and the animal’s ability to hang on to the grid is evaluated. Optionally, 
the grid is turned to the vertical position. Aka Grid performance test, Screen 
test and Wire grip. Also see Wire hanging. 

Jet ball  See Virtual reality spatial navigation systems 
Knee-bend test421,422 Nociception Low 2008* The animal is gently restrained and the knee joint extended and flexed five 

times and the amount of squeaks and/or struggle is evaluated. Also see 
Ankle-bend test. 

Ladder climb423–425 Sensory-motor 
function 

Low 2006* The time required for an animal to climb up an inclined ladder is measured. 
Aka Inclined ladder. Also see Stairway test. 

Ladder rung walk426–

430 
Sensory-motor 
function 

Medium 1997* The number of paw slips, which additionally may be precisely categorized, is 
counted when the animal walks along a horizontal ladder made of 
irregularly or regularly spaced rungs. Aka Horizontal ladder. Also see Grid 
walk. 

Lashley III maze431–

434 
Learning and 
memory 

Low 1929 The time required to navigate through a relatively simple maze to reach a 
reward at the end is measured.  

Latent inhibition435–

440 
Sensory 
information 
processing 

High 1959* If an animal is repeatedly exposed to a sensory cue which is not paired with 
a positive or negative reinforcer the animal will consider the sensory cue 
irrelevant and start to ignore it. If the sensory cue thereafter is paired with a 
reinforcer it will take a longer time than usual for the animal to make the 
association between them, latent inhibition, because the sensory cue is 
initially ignored. Reduced latent inhibition is interpreted as a schizophrenia-
like behavior. Also see Prepulse inhibition. 

Lateral 
pulsion23,273,274,276,441 

Neurological 
function, 
Laterality 

Medium 1979* The resistance an animal exerts towards being gently pushed sideways using 
one hand on each side of the animal is evaluated. Intact animals normally 
resist the push while unilateral brain insults reduces resistance when 
pushed towards the contra-lateral side. Aka Bracing test. 

Lateralized reaction 
time task151,442–445 

Attention, 
Laterality 

Low 1985 To initiate a trial the animal has to perform an extended nose-poke in a 
centrally located hole. After a short delay a light is turned on to either the 
left or right side. To receive a reward the animal has to perform another 
nose-poke at the side indicated by the light. 

  



Ledged tapered 
beam446–448 

Sensory-motor 
function 

Low 2002 The test determines the number of foot slips and the time required for an 
animal to traverse a tapering beam with ledges on either side to reach a 
goal box. Aka Challenging beam. Also see Beam walk. 

Light-dark box202,449–

456 
Anxiety-like 
behavior 

High 1980 Time spent in different chambers and transitions between them is 
measured in an arena divided into one dark and one brightly illuminated 
chamber. Also see Emergence test. 

Location 
discrimination457–459 

Spatial learning 
and memory 

Low 1998* The animal has to be able to discriminate between two locations and 
choose the correct one to receive a reward.  

Locomotor 
sensitization127,185,460

–462 

Substance 
dependence 

High 1990* To what extent repeated drug injections cause an increased spontaneous 
locomotor activity is assessed. Aka Behavioral sensitization. Also see Head 
twitch response. 

Louisville swim 
scale463 

Sensory-motor 
function 

Low 2006 The swimming pattern following spinal cord injury is assessed using a 
qualitative scale. Also see Swimming test. 

Marble burying464–

473 
Obsessive-
compulsory like 
behavior 

High 1981* Glass marbles placed in the cage are buried with bedding material by the 
rodent. Burying of large amounts of marbles is considered to be an 
obsessive-compulsory like behavior.  

Modified 
neurological 
severity score 

 See Neurological score 

Montoya staircase 
test 

 See Staircase test 

Morris water 
maze474–491 

Visuo-spatial 
learning and 
memory 

High 1981 Upon repeated testing the animal learns the position of a platform hidden 
under the water surface of a large tank. The latency to swim to the platform 
is used as a measure of learning and memory. Also see Radial arm water 
maze. 

Multiple T-maze  See T-maze 
Multivariate 
concentric square 
field492–494 

Exploratory 
behavior 

Low 2006 Complex behavioral patterns are measured in an arena with several zones 
of different characteristics and the results are evaluated using multivariate 
statistics (Fig 2A).  

Negative 
geotaxis106,495–501 

Vestibular 
function, 
Developmental 
stage, Laterality 

Medium 1926 The time required for the animal to turn around (against gravity) to face 
upwards is measured when placed facing down on an inclined plane. By 
repeating and noting the number of left and right turns, laterality can be 
assessed.  



Nest building91,502–505 Species-typical 
behavior 

Medium 1949* The animal is given access to nest building material and the quality of the 
constructed nest is assessed. Aka Bin cotton use. 

Neurological 
score229,274,276,506–514 

Neurological 
function 

High 1968 A combination of several easily performed tests to evaluate neurological 
function. The tests included vary widely and several combinations have 
been used. Aka Bederson scale, Composite neuroscore, Functional 
neuroscore, Gross neuroscore, Modified neurological severity score, 
Neurological severity score and Neuroscore. 

Neurological 
severity score 

 See Neurological score 

Neuroscore  See Neurological score 
Novel object 
recognition515–523 

Learning and 
memory, Episodic 
memory 

High 1988 Time spent investigating a novel versus a previously encountered object is 
recorded to determine if an animal remembers the previously encountered 
object. Aka Spontaneous object recognition. Also see Novel odor 
recognition. 

Novel odor 
recognition524,525 
 

Learning and 
memory, Episodic 
memory 

Medium 2004* The amount of time spent exploring a novel odor is used to assess learning 
and memory. An animal is placed in an arena with a single odor presented 
at two locations and after a delay, the animal is returned to the arena 
where a novel odor is presented at one location while the previously 
encountered odor is presented at the other location. Also see Novel object 
recognition. 

O-maze  See Zero-maze 
Oasis maze526 Visuo-spatial 

learning and 
memory 

Low 2005 The time required for a water-deprived animal to locate a source of water in 
a maze during repeated testing is measured.  

Object-location 
paired associate 
learning 

 See Paired associate learning 

Odor span task527–531 Learning and 
memory, Working 
memory, Olfaction 

Low 2000 In the first trial the animal digs in a cup filled with scented digging material 
to retrieve a reward. Two cups are used in the second trial; one cup has the 
original scent while the other has a novel scent and also contains the 
reward. As long as the animal correctly chooses the cup with the novel 
scent an additional cup is introduced in the next trial. Also see Attentional 
set-shifting, Dig task and Spatial span task. 



Olfactometry532–540 Olfaction Low 1958* Olfactory function can be assessed using an operant conditioning approach. 
The animal is trained to lick on a metal spout in the presence of an odor, 
correct response, which results in the delivery of a liquid reward. Licking in 
the absence of odor, incorrect response, results in a time-out period. 

Olfactory 
discrimination541–549 

Learning and 
memory, Olfaction 

Medium 1972* The test determines whether the animal is able to discriminate between 
odors and use the obtained information to perform the correct choice. 
Testing can for example be performed using an olfactometer or carried out 
in the home cage. 

Olfactory 
habituation/dishabit
uation87,550,551 

Olfaction Low 1981 The same odor is repeatedly presented to the animal which gradually loses 
interest in this odor (habituation). Switch to a novel odor restores interest 
(dishabituation) if the animal is able to discriminate between the two odors.  

Olfactory tubing 
maze552–554 

Learning and 
memory, Olfaction 

Low 2002 The test determines the ability of a water-deprived animal to learn and 
remember how to use olfactory cues to find water in a maze made up of 
plastic tubing.  

One-way active 
avoidance555–557 

Learning and 
memory 

Medium 1974* The test evaluates the ability to learn that a tone in a dark compartment is 
followed by a foot-shock that can be avoided by escaping to a brightly 
illuminated compartment. Also see Passive avoidance and Shuttle-box. 

Open field558–569 Anxiety-like 
behavior, 
Locomotor activity 

High 1934 The behavioral patterns of animals placed in an open circular or square 
arena are recorded. Also see Emergence test. 

Operant chamber 
vision 
assessment570–572 

Vision assessment Low 2000* A grating is displayed on one of several monitors in the operant chamber. If 
the animal is able to detect the grating it can use this information to 
perform the correct response and receive a reward. 

Operant 
chamber39,539,573–581 

Cognitive 
function, Sensory 
function 

High 1958* The animal is placed in a small chamber where it can perform nose-pokes, 
lever presses or touch-screen interactions (responses) to receive a reward. 
Typically the animal can choose between different responses where only 
the correct one is rewarded. The number of responses required for a 
reward can be fixed or progressively increased over a trial. Operant 
chambers are very versatile and can be used to evaluate several kinds of 
cognitive and sensory function. Aka Skinner box. 

Operant delayed 
alternation 

 See Delayed alternation 

OptoMotry  See Virtual optomotor system 



Paired associate 
learning582–

589 

Learning and 
memory, 
Associative 
learning 

Medium 1993* The animal has to learn to associate two things to receive a reward. The 
association can for example be object-location, object-odor or odor-
location. The test can be performed in for example operant chambers or in 
custom designed test equipment. 

Partition test590–592 Social interaction Low 1965* The test determines the amount of investigative behavior evoked when two 
animals are placed in a cage separated by a perforated divider. Also see 
Urinary marking patterns. 

Passive 
avoidance593–612 

Learning and 
memory 

High 1960* The animal is placed in a test chamber where a certain behavior results in 
an aversive event (typically an electric shock). After a delay the animal is re-
introduced to the test chamber and the avoidance of the behavior which 
resulted in the aversive event is assessed. The behavior the animal has to 
avoid can e.g. be to move from a brightly lit to a dark compartment (step-
through passive avoidance), stepping down from a platform (step-down 
passive avoidance) or drinking from a water spout. Also see Active 
avoidance. 

Pasta handling Skilled forelimb 
use 

Low 1996* Paw use when handling and eating strands of dry pasta is evaluated. Aka 
Vermicelli handling test and Capellini handling test. 

Paw preference 
testing613–620 

Skilled forelimb 
use, Laterality 

Low 1968 The extent of left versus right paw use is assessed when the animal reaches 
for food through a small opening. A single medial opening (Collins test) or 
two lateral openings can be used. Aka Collins test. 

Paw print 
analysis76,621–627 

Gait Medium 1963* The gait pattern is assessed by evaluating the paw prints made when an 
animal, with the paws dyed using two colors of non-toxic paint, is made to 
run across a sheet of paper. Also see CatWalk. 

Pin-prick421,628,629 Nociception Medium 1991* The animal is lightly pricked with a thin needle and the evoked withdrawal 
response is assessed.  

Plantar test  See Hargreaves test 
Play fighting630–636 Species-typical 

behavior 
Low 1899 The extent and quality of play fighting between juvenile animals is assessed.  

Pole test637–640 Sensory-motor 
function 

Medium 1985* The time required for an animal placed on top of a pole to turn around and 
descend is measured. Also see Vertical grid. 

Porsolt test  See Forced swim test 
  



Postural instability 
test162 

Neurological 
function 

Low 2012* The animal is held by the trunk, head down in an almost vertical position, 
with its forepaws on a table and the distance the animal has to be moved 
forward to trigger a step is measured. Also see Stepping test. 

Predator odor 
induced fear242,641–

645 

Anxiety-like 
behavior 

High 1919 The animal’s reaction when exposed to odors of predator species such as 
cats, ferrets and foxes is assessed. Also see Fear conditioning and extinction. 

Prehensile traction  See Wire hanging 
Prepulse 
inhibition646–652 

Sensory 
information 
processing 

High 1973* The inhibition of the acoustic startle and tactile startle response by a 
warning signal (prepulse) is evaluated. Absence of prepulse inhibition is 
interpreted as a schizophrenia-like behavior. Also see Acoustic startle, 
Latent inhibition and Tactile startle. 

Pull up test653,654 Neurological 
function 

Low 1984 The ability of the animal to pull up from a head-down vertical position when 
held in the hind paws is evaluated.  

Radial arm maze655–

664 
Visuo-spatial 
learning and 
memory, Working 
memory 

High 1976 The test arena consist of several arms arranged like spokes on a wheel 
surrounding a central area where all, or some, of the arms are baited with 
food. The ability of the animal to remember the location of the baited arms 
between sessions (long term memory) and visited arms during a single 
session (working memory) is evaluated. Also see Radial arm water maze. 

Radial arm water 
maze665–669 

Learning and 
memory 

Medium 1985 A hybrid of the Radial arm maze and Morris water maze tests. A Radial arm 
maze is filled with water and the animal has to find a platform located at 
the end of one of the arms to escape. Upon repetition the latency to find 
the platform decreases in animals with an intact learning and memory. Aka 
Water radial arm maze. Also see Morris water maze and Radial arm maze. 

Randall-Selitto 
test670–673 

Nociception Medium 1957 The mechanical pressure required to evoke a withdrawal response is 
assessed by applying gradually increasing mechanical pressure to the paw. 
Also see von Frey filaments.  

Reaching box  See Tray task 
Resident-intruder 
test592,674–676 

Social interactions High 1975* The behavior evoked by placing an animal (intruder) in the home cage of 
another animal (resident) is assessed. Typically, the resident will attack the 
intruder to defend its territory.  

  



Reversal 
learning30,581,677–681 

Learning and 
memory, 
Cognitive 
flexibility 

High 1957* The animal first learns that one of two possible responses is rewarded. 
When performance has reached a criterion the rules are changed and the 
alternate response is rewarded. Reversal learning can be performed in for 
example an Operant chamber, the T-maze or Morris water maze. In serial 
reversal paradigms the correct choice is repeatedly reversed as soon as the 
criterion is reached. 

Rope climbing427,682–

687 
Sensory-motor 
function 

Low 1951* The ability to climb a vertically suspended rope is evaluated.  

Rope walking  See Horizontal rope walking 
Rotarod76,688–700 Sensory-motor 

function 
High 1957 To avoid falling down, the animal has to run on top of an accelerating, or 

constant speed, rotating rod. Aka Rotorod. 
Rotating pole701–704 Sensory-motor 

function 
Low 1995* The animal has to traverse a horizontal rotating pole and the number of 

foot slips as well as the time required is measured. Also see Beam walk and 
Ledged tapered beam. 

Rotatory swimming 
test705–708 

Lateralization Low 1990* The rotational/circling/turning behavior while swimming in a bowl filled 
with water is assessed by counting the number of clockwise and counter-
clockwise laps made around the edge. Also see Rotometer. 

Rotometer620,709–722 Sensory-motor 
function, 
Laterality 

Medium 1970* The animal is placed in a bowl and the rotational/circling/turning behavior is 
measured by counting the number of clockwise and counter-clockwise 
circles made around edge of bowl. Aka Bowl test. Also see Rotatory 
swimming test. 

Rotorod  See Rotarod 
Round stick 
balancing230,723 

Sensory-motor 
function 

Low 2000* The ability of the animal to perch on a 5 mm diameter stick is evaluated. 
Also see Wire hanging and Wire traversal. 

Running wheel  See Wheel running 
Sarter’s sustained 

attention 
task 

 See Sustained attention task 

Screen test  See Inverted grid 
Self-
administration185,724–

738 

Substance 
dependence 

High 1962* The test measures the number of responses, typically lever presses, made 
to receive a small amount of the substance under investigation via the intra-
venous, intra-cranial or oral route. Also see Two-bottle preference test. 

  



Serial implicit 
learning task739,740 

Procedural 
learning 

Low 2005 Learning is assessed by determining the degree to which the animal is able 
to make the correct response to two stimuli in a row in order to receive a 
reward.  

Servo ball  See Virtual reality spatial navigation systems 
Set-shifting  See Attentional set-shifting 
Shock probe 
burying202,741–745 

Anxiety-like 
behavior, Learning 
and memory 

Medium 1978 The behavior of an animal placed in a cage containing a shock probe is 
evaluated. Rodents normally bury objects perceived as dangerous and the 
shock probe is typically promptly covered with cage bedding material 
immediately following the shock received when investigating the shock 
probe. Animals re-exposed to the shock probe will bury it before being 
shocked if they recall the first encounter.  

Shuttle-box556,746–753 Learning and 
memory 

High 1960* The animal is placed in a two-compartment arena where a light or sound 
signal in one of the compartments is followed by an aversive event such as a 
foot-shock or air puff. The animal must learn to move to the other 
compartment to avoid the aversive event and the number of aversive 
events successfully avoided by actively shuttling to the other compartment 
is recorded. Aka Two-way active avoidance. Also see Passive avoidance. 

Single pellet 
reaching754–759 

Skilled forelimb 
use 

Medium 1990* The animal reaches horizontally through a slit for a single pellet at a time. 
The movement is either described in detail or the amount of dropped 
pellets counted. Also see Tray task. 

Skinner box  See Operant chamber 
Social choice  See Social discrimination 
Social 
discrimination760–763 

Social memory, 
Social interactions 

Medium 1995 The test animal is first exposed to a stimulus animal and after a delay it is 
exposed to both the first stimulus animal and a second, novel, stimulus 
animal. If the test animal is able to discriminate between the two stimulus 
animals the amount of ano-genital investigation directed towards the novel 
stimulus animal is expected to be higher. 

Social habituation/ 
dishabituation760,762,

764,765 

Social memory, 
Social interactions 

Medium 1995* The test animal is repeatedly exposed to the same stimulus animal which 
normally reduces the amount of ano-genital investigations (habituation). On 
the last trial the test animal is exposed to a novel stimulus animal which 
normally leads to increased ano-genital investigatory response if the test 
animal is able to discriminate between the stimulus animals 
(dishabituation). 



Social interaction 
induced conditioned 
place preference766–

771 

Social memory, 
Social interactions 

Low 1992 The test evaluates if the animal considerers social interactions to be 
rewarding by determining if they induce a conditioned place preference. 

Social interaction 
test of anxiety772–775 

Anxiety-like 
behavior 

Medium 1978 The amount of social interaction is used to evaluate anxiety-like behavior. 

Social interaction 
testing 

 The amount of investigative behavior towards novel and previously 
encountered animals can be evaluated using several different protocols. It is 
typically used to evaluate social memory but can also be used to test 
anxiety-like behavior. To avoid agonistic behaviors (see Resident-intruder 
test) and sexual behavior the stimulus animals can be juveniles or 
ovarectomized females. 

Social preference  See Three chamber social approach 
Social 
recognition760,762,776,7

77 

Social memory, 
Social interactions 

Medium 1982 The test animal is exposed to a novel stimulus animal and after a delayed it 
is exposed to the same stimulus animal. If the test animal is able to 
recognize and remember the stimulus animal the amount of ano-genital 
investigation typically decrease between trials. As a control experiment two 
trials with different novel animals can be performed. This typically results in 
a similar amount of ano-genital investigation in the two trials. 

Socially transmitted 
food preference778–

783 

Learning and 
memory, 
Olfaction, Social 
interactions 

Low 1983* One animal (demonstrator) is allowed to consume a novel food and then 
allowed to interact with another animal (observer). Guided by olfactory 
cues in the breath of the demonstrator, the observer animal will then prefer 
the demonstrated food over other kinds of food if it has an intact learning 
and memory capacity as well as olfactory ability. By introducing an aversive 
event in the demonstrator animal, a socially transmitted food aversion may 
be induced.  

Spatial delayed 
alternation 

 See Delayed alternation 

  



Spatial span 
task151,530 

Learning and 
memory, Working 
memory 

Low 2000 For the first trial a cup with digging medium, baited with a reward, is placed 
in one of 24 possible locations. Following each successful trial a cup is added 
in a novel location and only this cup is baited with a reward. Digging in an 
un-baited cup is considered a failed trial and the animal has to try again 
with the same setup. Also see Attentional set-shifting, Dig task and Odor 
span task. 

Spontaneous 
forelimb use 

 See Cylinder test 

Spontaneous object 
recognition 

   See Novel object recognition 

Staircase maze784–787 Visuo-spatial 
learning and 
memory 

Low 1970 The animal runs up a wide stair on the left side where only certain steps 
contain sucrose pellets on right side. Upon repetition, the animal only 
searches for pellets on correct steps and the time required to find all pellets 
and the number of errors is used to evaluate learning and memory.  

Staircase 
test95,758,759,788–794 

Skilled forelimb 
use 

Medium 1991 The amount of successfully retrieved food pellets placed at ledges located 
at different heights below the animal is recorded. Aka Montoya staircase 
test. 

Stairway test795 Sensory-motor 
function, 
Laterality 

Low 2006 The time required and the extent of left/right deviations made by an animal 
climbing a broad vertical ladder to reach its home cage is evaluated. Also 
see Ladder climb. 

Step-down passive 
avoidance 

 See Passive avoidance 

Step-through 
passive avoidance 

 See Passive avoidance 

Stepping 
test441,796,797 

Neurological 
function 

Low 1979* The test evaluates the stepping pattern evoked when an animal is held 
above and moved along a horizontal surface with one or both forepaws in 
contact with it. Also see Postural instability test. 

Sticky paper test  See Adhesive removal test 
Sticky tape test  See Adhesive removal test 
String test  See Wire traversal 

  



Stop signal 
task30,38,798,799 

Executive control Low 2003* The experimental setup contains a hole for nose-poking and two levers. The 
animal starts a trial with a nose poke and then presses the first lever. It then 
has to rapidly press the second lever to receive a reward unless an auditory 
stop signal is given. In these cases refraining from a lever press is rewarded. 

Successive 
alleys800,801 

Anxiety-like 
behavior 

Low 2003 The test apparatus consist of four alleys in a row. Each alley is narrower 
than the previous one and therefore perceived as less safe. The time spent 
in each alley is used to evaluate anxiety-like behavior. Also see Graded 
anxiety test. 

Sucrose preference 
test802–805 

Depressive-like 
behavior 

High 1958* To what extent the animal prefers a sucrose solution over water is 
determined, usually using a two-bottle choice procedure. Decreased 
sensitivity to reward is considered to be a depressive-like behavior similar to 
anhedonia in patients. Also see Two-bottle preference test.  

Sustained attention 
task1,806–810 

Attention Low 1994* The introduction of two levers into the test chamber can be preceded by a 
sensory signal or an absence of a signal. The correct response (left or right 
lever) depends on whether the lever introduction was preceded by a 
sensory signal or not. The difficulty of the task can be increased by 
distracting sensory cues (Distractor sustained attention task). Also see 5-
choice continuous performance task and 5-choice serial reaction task. 

Swimming test463,811–

816 
Sensory-motor 
function 

Low 1970* The animal is filmed from the side while swimming from one end to the 
other of a transparent tank. Limb and tail use as well as body posture may 
be evaluated. Also see Louisville swim scale. 

Tactile startle817–819 Reflexive behavior Low 1975* An unexpected air-puff directed towards the animals back typically causes a 
startle response which can be automatically measured. Also see Acoustic 
startle and Pre-pulse inhibition. 

Tail suspension 
test820–827 

Depressive-like 
behavior 

High 1985 The mouse is suspended by its tail and the time spent immobile versus 
struggling to escape is measured. Low level of escape behavior is considered 
to be a depressive-like behavior.  

  



Tail flick287,305,406,828–

834 
Nociception High 1941 The time to withdrawal of the tail following thermal stimulation using a light 

beam is measured. Also see Tail immersion.  
Tail immersion835–838 Nociception High 1963 The time to withdrawal of the tail following immersion in hot water is 

measured. Also see Tail flick. 
Tarlov scale839–844 Gait Low 1954 A qualitative rating scale used in spinal cord injury research to evaluate gait 

patterns. Also see Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale. 
Three chamber 
social 
approach592,845–849 

Social interaction Low 2004  A mouse (test mouse) is introduced into a central empty chamber 
connected to one chamber with an empty cage and one chamber containing 
a mouse (target mouse) trapped in a cage. The way the test mouse interacts 
with the target mouse is evaluated. Optionally, a final phase with two target 
mice can be performed to evaluate if the test mouse interacts more with 
the novel target mouse (Fig 2C).  

Three-panel 
runway850,851 

Visuo-spatial 
learning and 
memory 

Low 1988 The animal traverses a runway to reach a goal box and at four points along 
the way it has to choose the correct gate among the three available at each 
point. The time required to traverse the runway decrease when the test is 
repeated if the animal learns and remembers the position of the correct 
gates.  

T-maze163,852–866 Learning and 
memory 

High 1939* The ability to choose the right arm of a T-shaped maze is evaluated. The 
animal can determine the correct choice using sensory cues or by 
alternating between the left and right arm each trial. Motivation is provided 
by food deprivation, foot shocks or by filling the maze with water. 
Optionally, several mazes can be connected (Multiple T-maze) or the maze 
can be Y-shaped (Y-maze). Access to the maze can optionally be provided by 
an automated sorting mechanism. Also see Elevated T-maze. 

Tongue 
protusion789,867,868 

Neurological 
function 

Low 1972* The ability to use the tongue to obtain food pellets or peanut butter 
through a small opening is evaluated.  

Tray task869–872 Skilled forelimb 
use 

Low 1986* The test determines number of successful horizontal reaches made for food 
pellets placed on a tray, separated from the animal by vertical metal bars. 
Optionally, the use of one paw may be restricted using adhesive tape or a 
bracelet. Aka Reaching box. Also see Single pellet reaching. 

  



Triple test873,874 Anxiety-like 
behavior, 
Locomotor activity 

Low 2008 A combination of Elevated plus maze, Open field and Light-dark box. 
Designed to avoid the problem of test order effects by running all three 
tests in a single session.  

Tube domination 
test592,875–878 

Social status, 
Social interaction 

Low 1961 The behavior of two animals which are introduced at each end of a narrow 
tube is analyzed. Since they are unable to pass each other, the dominant 
animal pushes the other backwards.  

Two-bottle 
preference test879–

884 

Substance 
dependence 

High 1940* Two bottles, commonly one with alcohol and one with water, are placed in 
the animal’s home cage to determine the preferred solution. Also see Self-
administration and Sucrose preference test. 

Two odor 
discrimination885–887 

Learning and 
memory, Olfaction 

Low 1989* To receive a reward the animal has to nose poke at the correct location, 
identified by discriminating between two odors. Increased numbers of 
correct nose pokes over time indicates intact olfactory ability as well as 
learning and memory capacity.  

Two-way active 
avoidance 

 See Shuttle-box 

Ultrasonic 
vocalization16,303,736,8

88–895 

Species-typical 
behavior, 
Developmental 
stage 

Medium 1970* Pups removed from their nest normally emit ultrasonic vocalizations if they 
are developing normally. Recordings of ultrasonic vocalizations from adult 
animals may also aid in the understanding of their behavior by analyzing the 
type and frequency of vocalizations.  

Urinary marking 
patterns878,896,897 

Social status, 
Social interactions 

Low 1973 The social status of two animals is evaluated by visualizing urination 
patterns using ultraviolet light. The animals are placed on each side of a 
screen in a cage with absorbent material covering the floor. Typically, 
dominant animals mark the entire area in contrast to subordinate animals 
that mark only the corners. Also see Partition test. 

Vermicelli handling 
test 

 See Pasta handling 

Vertical grid420 Sensory-motor 
function 

Low 2010 The animal is placed on a vertical grid, head up, and the time required to 
turn around and descend is measured. Also see Pole test. 

  



Vibrissae-evoked 
forelimb 
placing158,161,898–901 

Neurological 
function, 
Laterality 

Medium 1990* The motor response evoked by vibrissae touch is evaluated by holding the 
animal by the torso and moving it either head on or sideways towards the 
edge of a table or Plexiglas surface. Typically, intact animals place the 
forelimbs on the table/Plexiglas when the vibrissae touch the side of the 
table/Plexiglas.  

Virtual optomotor 
system902–904 

Vision assessment Medium 2004 The animal is placed on a small platform surrounded by four monitors. 
When a grating is displayed on the monitors the animal will reflexive move 
the head to follow the grating if it is able to detect the grating (Fig 2E). 

Virtual reality spatial 
navigation 
systems905–910 

Spatial navigation Low 2005* An animal with the head fixed or wearing a harness walks on top of a large 
air-supported Styrofoam ball. As the animal walks on top of the ball it 
moves around in a virtual reality world displayed on computer monitors in 
front of it. The system can be combined with operant conditioning 
techniques, electrophysiological recordings as well as 2-photon imaging. 

Visible burrow 
system878,911–916 

Species-typical 
behavior, Social 
interactions, 
Social status 

Low 1985* The test assesses social status as well as aggressive and defensive behaviors 
of a group of animals housed in a semi-natural arena.  

Visual cliff 
avoidance917–920 

Depth perception, 
Vision assessment 

Low 1957 The animal is placed in an arena with a transparent bottom that extends 
beyond the edge of the table to create the optical illusion of a cliff. If the 
animal avoids the cliff or not is determined to assess depth perception 
ability.  

Visual 
discrimination 
learning43,921–927 

Associative 
learning and 
memory, Vision 
assessment 

Medium 1954* The animal is repeatedly presented with two visual stimuli and receives a 
reward if it is able to discriminate between the images and use this 
information to perform the correct action. By adjusting the protocol visual 
discrimination can be used to evaluate learning and memory as well as 
vision. Visual discrimination learning is typically performed in operant 
chambers but can also be performed using the Visual water task. 

Visual water task928–

930 
Vision assessment Low 2000 The animal is placed in a water-filled tank with a submerged platform in one 

of two possible locations. Visual cues guide the animal to the platform if it 
has sufficient visual acuity to detect them. 

  



Vogel conflict 
test202,931–933 

Anxiety-like 
behavior 

Medium 1971 The behavior of water-deprived rodents given access to a water spout 
which occasionally delivers a mild electric shock is analyzed. The desire to 
both drink water and to avoid the electric shock creates a conflict situation. 
Also see Four plate test and Geller-Seifter conflict test. 

von Frey 
filaments94,360,406,934–

944 

Nociception High 1986* The pain evoked response following stimulation of the ventral surface of the 
paw using filaments of different strength is recorded.  

Water cross maze  See Cross maze 
Water radial arm 
maze 

 See Radial arm water maze 

Wheel running945–964 Locomotor 
activity, Circadian 
rhythms 

High 1898* The animal is given free access to a running wheel and its use is analyzed to 
assess both circadian rhythms and locomotor activity levels. Aka Running 
wheel. 

Whisker nuisance 
test965 

Sensory function Low 2010 The whiskers of a rat are stimulated using a stick. Responses such as 
withdrawal or stick biting are used to evaluate hyper-sensitivity (Fig 2F).  

Whisker trimming  See Barbering 
Wire grip  See Grip strength, Inverted grid, Wire hanging and Wire traversal 
Wire hanging966 Sensory-motor 

function 
Low 2012* The time the animal is able to hang onto a single horizontal wire with its 

forepaws is measured. Unlike the Wire traversal test lateral movement of 
the animal is prevented with screens in this test. Optionally, adhesive tape 
may be used to prevent hind paw use. Aka Wire grip. Also see Grip strength, 
Inverted grid and Wire traversal.  

Wire traversal966–968 Sensory-motor 
function 

Low 1978 The time required for an animal to grip and traverse a single horizontal wire 
is evaluated. Unlike the Wire hanging test all four paws and tail may be used 
to traverse the wire if the animal is able to do so. Aka String test and Wire 
grip. Also see Grip strength, Inverted grid and Wire hanging. 

Y-maze  See T-maze 
Zero maze199,213,969–

973 
Anxiety-like 
behavior 

Medium 1994 A modification of the Elevated plus maze. By arranging the open and closed 
arms in a circle, the center zone is excluded. Also see Elevated plus maze. 

Ziggurat task974,975 Visuo-spatial 
learning and 
memory 

Low 2008 16 ziggurats (pyramid shaped towers) with a place for a food reward at the 
top are arranged in a 4x4 grid. The animals have to learn and remember the 
position of the reward containing ziggurats to obtain the rewards faster. 
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