
Supplementary Materials 

S1  Tissue and gland formation classifiers development and Spatial Pyramid Pooling 

Survival Networks (SPPSN) development 

S1.1 Annotation of gland-forming regions and tissue types 

Annotations on gland-forming (GF) regions of interest (ROIs) were provided by our own clinical pathologists with at 

least 5 years of clinical experience in CRC. Two pathologists working separately and independently first identified 

ROIs in WSI containing epithelial cells that were at least 800x800 pixels in area (see “WSI” in Fig. 1.A). Each ROI 

was then classified by visual inspection as one of either “GF3” (paucity of gland-forming cells), “GF2” (complex or 

irregular tubules with cribriform morphology glands), “GF1” (simple tubules only) or “X” (normal epithelial cells). In 

any case of inter-rater discrepancy, the ROI was referred to a third pathologist with more than 15 years clinical 

experience in CRC to adjudicate. As training for a CNN for GF classification, we thus acquired 3436 ROIs with GF 

region annotated by pathologists from a randomly selected subset of 241 WSI from TCGA-COAD, and 421 ROIs with 

GF annotated from a randomly selected subset of 28 WSI from TCGA-READ. 

Annotations for tissue type (i.e. epithelium, stroma, lymphocytes, slide background or “other”) were obtained by 

manual segmentation by a single radiotherapy technologist. The “other” type referred to tissue that did not belong to 

one of the other four types, such as muscle, adipose, debris and mucus.  This task was deemed reasonably obvious to 

trained clinical personnel, thus no inter-rater verification was performed for this step. Tissue type segmentations were 

drawn onto ROIs measuring at least 800x800 pixels in area. For training a tissue type segmentation algorithm, we thus 

acquired 828 tissue segmentation masks from a randomly picked subset of 74 WSI in TCGA-COAD, and 142 

segmentation masks from a randomly picked subset of 10 WSI in TCGA-READ. 

S1.2 Image pre-processing 

ROIs of 800x800 were still unwieldy for our available computation capacity. We thus randomly sampled “training 

patches” measuring 299x299 pixels from anywhere within a given ROI. The choice of 299x299 was the default size 

in the Xception V3 CNN architecture[1]. Training patches were balanced with respect to equal proportions of GF 

classification by over-sampling for less prevalent GF labels. Data augmentation was used to reduce sensitivity to spatial 

orientation and image capture conditions; each patch was rotated by a random angle, and then half of these at random 

were flipped horizontally. Pixel intensities in each patch was also individual perturbed; values were multiplied by a 

random number between 0.9 to 1.1, and then offset by a random number between -8 and +8. Finally, pixel values were 

clipped to a maximum of 255. Training and validation were performed exclusively using these resampled and 

augmented 299x299 patches taken from the combined TCGA-COAD and TCGA-READ. The total number of available 

patches were randomly split in 90:10 ratio for training and validation. 

S1.3  Tissue type segmentation 

A tissue-type classifier was trained for 800 epochs, with each epoch containing 2000 batches of batch size 16. An 

Adam optimizer was used with an initial learning rate of 0.0001 that was progressively reduced by factor 10 in 



consecutive 200 epochs. A cross-entropy loss function was used. The CNN architecture was minimally modified from 

the default Xception V3 network[1]; details of architecture and model training are given in the S1.4. The output layer 

of the model contained the class probabilities of epithelium, stroma, lymphocytes, slide background and “other” tissue. 

To segment new WSI, we implemented a sliding window with size 299x299 and stride length of 149 spanning the 

whole WSI. In each window position, we recorded the discrete class probabilities. In this manner, five distinct binary 

masks (one for each tissue type) were generated for each test WSI, with the same dimensions as the WSI. These binary 

masks were saved for further analysis and subsequent training for a survival prediction model. 

We demonstrate architecture of tissue classifier model on Fig. S1. After the architecture of XceptionV3, we added a 

full connection layer with output size of 5.  

S1.4 Gland formation label classification 

A GF-classifier was also based on the default Xception V3 CNN and trained with the same hyper-parameters as the 

aforementioned tissue type model; additional details are provided in the S1.6. However, we derived two types of output 

from this model; a categorical discrete GF label prediction and a continuous linear predictor (LP; where LP=0.0 implied 

“X”, LP=3.0 implied “GF3” and so on). The discrete class prediction used to optimize the overall accuracy of label 

assignment (i.e. X, GF1, GF2 or GF3), while the continuous LP was used to capture the rank relationship between two 

immediate adjacent grades. The loss function was the sum of two errors, cross-entropy for the discrete category and 

mean absolute error for the continuous LP. 

To test the GF classifier in hitherto unseen WSI, we also used a sliding window technique (see Fig. 1.B) with size 

299x299 and stride length of 149 covering the entire WSI. In each window position, we recorded the discrete GF class 

probabilities as well as the LP value. We then stitched these windows into a composite color map covering the entire 

WSI, using the LP value as scaling color, then overlaid this onto the WSI to give a direct easy visual reference for 

pathologists to evaluate. These GF color maps were saved for further analysis and subsequent training for a survival 

prediction model.   

We demonstrate architecture of GF classifier model on Fig. S2. After the architecture of XceptionV3, we added a full 

connection layer with output size of 4. Then this output was further added with 4 full connection layers with output 

size of 4 and a full connection layer with output size of 1 for grading and this output was also applied with softmax for 

classification. We calculate the loss of categorical cross entropy for task of classification and the loss of mean absolute 

error for task of grading and the sum of two loss are defined as loss function for training. 

S1.5 Model architecture and details of Spatial Pyramid Pooling Survival Network (SPPSN) 

We demonstrate architecture of SPPSN on Fig. S3. There were 3 phases in SPPSN. The first phase is input 

preprocessing. In this phase, an original WSI was translated into tissue maps by tissue classifier. The tissue maps 

included 5 channels of epithelium, stroma, immune cells, other and background. The original WSI was also translated 

into GF maps by GF classifier which included 5 channels of GF1, GF2, GF3, X probability and linear predictor. The 

epithelium channel in tissue maps was separately applied on GF maps to generate masked GF maps. The remaining 4 



channels of tissue maps (stroma, immune cells, other and background channel) along with thumbnail of original WSI 

were concatenated into masked GF maps to obtain input data with 12 channels for SPPSN training. The second phase 

was SPP layer. The input data were segmented into spatial bins which had sizes proportional to the input data size. 

The proportions were 1, 1/2, 1/4 and 1/6 in this study. In each spatial bin, we pooled the responses of each filter by 

maxpooling approach. Thus 1-dimension features can be generated by pooling for each bin proportion and final 

representation features of input data was obtained by adding these 1-dimension features.  The last phase was survival 

network. Three linear layer blocks with shape of 32, 16 and 1 constituted the survival network. Each linear layer block 

included a drop out layer with drop out ratio of 0.5, a linearlayer, a batch normalization layer and a ReLu activation 

layer.  

The input to the SPPSN was given a 50% chance of flip image transformation, and all were randomly rotated by either 

0°, 90°, 180° or 270°. In a single epoch, the training set was repeated 4 times and flipped/rotated as described. The 

model was trained with learning rate of 0.0001, SPP pooling shape of (6, 4, 2, 1), with L2 penalty of 0.01, minimum 

batch size of 64, dropout rate of 0.5 and epoch size of 20. The Adam optimizer and ReLU activation was used. 

 

S2 Calculation for semi-quantitative gland formation percentage and comparison 

We may generalize the SGFR to alternative weightings in the following manner. The probabilities given by the GF-

classifier that a given tile t contains the label g is denoted as PGF (t = g) , where 𝑔 has one of the allowed labels of 

“GF1”, “GF2” or “GF3”. The expression ∑ 𝑤𝑔 ∗ 𝑃𝐺𝐹(𝑡 = 𝑔)]𝑔  thus represents a weighted sum of gland-forming class 

probabilities such that the weights are defined by the factor 𝑤𝑔 . The probability that the same tile t contains any type 

of gland-forming tissue is 𝑃𝐺𝐹(𝑡 ≠ ′𝑋′) , where the aforementioned label ‘X’ denotes normal epithelial cells. Similarly, 

the probability that the tissue type in the tile 𝑡 is actually “epithelium” according to the tissue segmentation will be 

𝑃𝑇𝑆(𝑡 = ′𝐺′) . We estimate a semi-quantitative gland-forming tumor ratio (SGFR) as a weighted average of gland-

forming class probabilities over every available tile t, on condition that the tissue type is “gland” and the type of gland-

forming region is not normal epithelial cell ‘X’. All this is expressed in Equation (1). Note that there are three slightly 

different calculation approaches according to AI prediction, we chose the best estimation in survival analysis for 

evaluation, validation and comparison.  

SGFR =  
∑ [𝑃𝑇𝑆(𝑡 = ′𝐺′) ∗ 𝑃𝐺𝐹(𝑡 ≠ ′𝑋′) ∗ ∑ 𝑤𝑔 ∗ 𝑃𝐺𝐹(𝑡 = 𝑔)]𝑔𝑡

∑ 𝑃𝑇𝑖(𝑡 = ′𝐺′) ∗ 𝑃𝐺𝐹(𝑡 ≠ ′𝑋′)𝑡

          (1) 

 

Besides the definition of SGFR based on probability which is also referred to PSGFR, a category SGFR (CSGFR) was 

also proposed based on category result of tissue classifier and GF classifier. In probability approach, a tile was regarded 

as mixture of different classification results with responding probability while in category approach, a tile was regarded 

as one classification outcomes according to maximum of classification results. The formula (2) illustrate the CSGFR. 



CSGFR =  
∑ 𝑤𝑔{𝑡|𝑎𝑟𝑔𝑚𝑎𝑥{𝑃𝑇𝑆(𝑡)}=′𝐺′ ^ 𝑎𝑟𝑔𝑚𝑎𝑥{𝑃𝐺𝐹(𝑡)}≠′𝑋′}

∑ 1{𝑡|𝑎𝑟𝑔𝑚𝑎𝑥{𝑃𝑇𝑆(𝑡)}=′𝐺′ ^ 𝑎𝑟𝑔𝑚𝑎𝑥{𝑃𝐺𝐹(𝑡)}≠′𝑋′}

 (2) 

In GF classifier, a linear predictor was obtained and thus a new SGFR based on deep linear predictor (DSGFR) can be 

calculated. The linear predictor may reveal more detailed status between GF classifications thus it’s worthy to be 

investigated. The formula (3) illustrate the definition of DSGFR. 

DSGFR =  
∑ [𝑃𝑇𝑆(𝑡 =′ 𝐺′) ∗ 𝑤𝑔𝑙]{𝑡|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝑡)≥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝑡=′𝐺𝐹1′)}

∑ [𝑃𝑇𝑆(𝑡 =′ 𝐺′)]{𝑡|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝑡)≥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝑡=′𝐺𝐹1′)}

 (3) 

In formula (3) predictor(t) denotes the score that tile t predicted by linear predictor, predictor(t=’GF1’) denotes score 

of GF1 that predicted by predictor. The linear predictor predicts score from 0 to 3, score 0 means normal tissue,1 means 

GF1, 2 means GF2 and 3 means GF3, respectively. Therefore, if score higher that 1 (the score of GF1) means the tissue 

was tumor indicated by predictor. The wgl denotes the linear weight to linear predictor, in mathematic expression wgl = 

[1 - (predictor score – 1) / 2]. In this expression score 3 responding to weight of 0 which indicate non-gland formation, 

score 3 responding to weight of 1 which indicate tumor with gland formation. 

The performance of all these 3 approaches were conducted in TCGA dataset. The c index for PSGFR, CSGFR and 

DSGFR were 0.552, 0.548 and 0.548 which indicated SGFR possessed moderate prediction power. The Kaplan-Meier 

curves were shown in (Fig. S4). For WHO’s cut-off method, only few WSIs belongs to high-differentiation (>0.95) or 

un-differentiation (<0.05). In detail, number of un-differentiation WSIs and high-differentiation WSIs were 5 and 18, 

5 and 31, 5 and 32 corresponding to probability differentiation grade, category differentiation grade and deep 

differentiation grade compared to total valid 1157 WSIs. Therefore, we only focus on Kaplan-Meier curves of medium- 

and low-differentiation groups (p=0.02, 0.02, and 0.03 for PSGFR, CSGFR and DSGFR, respectively, log-rank test). 

The median cut-off method showed no statistic significant (p=0.26, 0.27, and 0.28 for PSGFR, CSGFR and DSGFR, 

respectively, log-rank test). The optimized cut-off method indicated only one cut-off point for all three differentiation 

grades and the related groups were significant (p=0.01, 0.01, and 0.02 for PSGFR, CSGFR and DSGFR, respectively, 

log-rank test). Optimized cut-off method also provided the cut-off point of 0.49, 0.51 and 0.50, respectively. The 

optimized cut-off points were very close to WHO’s proposed cut-off point and WHO’s proposed cut-off point could 

stratify WSIs well itself. In general, these three approaches achieved to similar performance in c-index and log-rank P 

of Kaplan-Meier curves and we choice PSGFR that had relative best performance in c-index to represent SGFR. 

S3 Calibration curves of multivariable Cox models 

The 60 months calibration curves of baseline model, gland formation enhanced model and deep survival grade 

enhanced model were shown in Fig.S7. As can be seen in Fig.S7, calibration curves of deep survival enhanced model 

were closer to perfect calibration curve than other models in both validation set and test set. 

S4 Performance of human histological grade in test set 

In the local institutional dataset, we were able to examine Kaplan-Meier survival curves split according to a three-part 

histological grade assigned by human experts - high, medium and low differentiation. These grades were assigned by 



pathologists based on human visual inspection only of whole WSIs. The results shown in Fig. S6. The c-index of 

human grading was 6.2 which was also similar to our semi-quantitative gland formation ratio.  The spearman 

correlation test also indicate the correlation between human grading and SGFR, the correlation coefficient was 0.234 

with p value of 0.015. A indicates statistically significant stratification between medium and low differentiation, and 

was confirmed by log rank tests with p value of 0.02. There existed 4 subjects in group high differentiation but all of 

them were not observed endpoint events thus no curve of group high differentiation was presented in Fig. S5. In multi-

variable Cox analysis with clinical features (Fig. S5), this grading did not indicate a hazard ratio statistically 

significantly different from 1. The c-index here was 0.76, which was the same discrimination performance as for age, 

AJCC stage and vascular invasion alone. The human grading shared the same power of enhancing multi-variable Cox 

model with SGFR. 
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Figure Legends 

Fig. S1 Architecture of tissue classifier 

Fig. S2 Architecture of gland formation (GF) classifier 

Fig. S3 Architecture of Spatial Pyramid Pooling Survival Network (SPPSN). In input data processing 

stage, channels of gland in tissue heatmaps will mask on gland formation heatmaps. The rest 4 channels of 

tissue heatmaps together with masked formation heatmaps and thumbnails of original WSIs were put into 

SPPSN. The shapes of SPP layer were 1, 2, 4 and 6. Finally a deep survival networks were added behind 

the SPP layer. 

Fig. S4 Kaplan-Meier curves for different SGFR algorithms via different cut-off methods Kaplan-

Meier curves of probability differentiation grade, category differentiation grade and deep differentiation 

grade with cut-off method of WHO, median and optimized. The columns represent different differentiation 

grades, and the rows represent different cut-off method. 

Fig. S5 Kaplan-Meier curves of the local institutional dataset for human grading. Kaplan-Meier curves 

of low differentiation, medium differentiation and high differentiation by human experts in local 

institutional dataset. 



Fig. S6 Hazard ratio of the Cox model combined with human grading in the local institutional dataset. 

Multivariable cox model of age, AJCC stage, vascular invasion and differentiation provided by human 

experts. 

Fig. S7 The 60 months calibration curves of baseline model, gland formation enhanced model and 

deep survival grade enhanced model. 

 

Fig. S1 Architecture of tissue classifier 

 

Fig.  S2 Architecture of gland formation (GF) classifier 

 



 

Fig. S3 Architecture of Spatial Pyramid Pooling Survival Network (SPPSN). 



 

Fig.S4 Kaplan-Meier curves for different SGFR algorithms via different cut-off methods  



 

 

 

Fig. S5 Kaplan-Meier curve of the local institutional dataset for human grading. 



 

Fig. S6 Hazard ratio of the Cox model combined with human grading in the local institutional dataset. 

 

Fig.S7 The 60 months Calibration curves of baseline model, baseline + gland formation model and 

baseline + deep survival model. 


