
Supplementary Material

1 ANALYTICAL DERIVATION OF DISPLACEMENT AT CRACK SURFACE

For brittle materials exhibiting linear elastic behavior, analytical methods of elasticity are used to
obtain stresses and displacements in cracked bodies, such as complex potential function method.
In the complex potential method introduced by Kolosov and Muskhelishvili(Sun et al., 2012; Wei,
2010), stresses and displacements in two-dimensional crack problems are expressed in terms of
analytic functions of complex variables. The problem of obtaining stresses and displacements around
a crack tip is converted to finding some analytic functions subjected to appropriate boundary
conditions. Following the general Kolosov-Muskhelishvili formulas, Westerhaard (Westergaard,
1933; Sun et al., 2012) established a more convenient method to compute the basic crack problems.

Let us focus on Mode I crack in plane stress problem, the concept of Airy stress function ϕ is
firstly introduced through

σxx =
∂2ϕ

∂y2
, σxy = − ∂2ϕ

∂x∂y
, σyy =

∂2ϕ

∂x2
(S1)

so that the equilibrium conditions
∇2(σxx + σyy) = 0

can be automatically satisfied and becomes

∇4ϕ = ∇2∇2ϕ = 0 (S2)

where ∇4 is the biharmonic operator.

By representing ϕ in complex potential, the Kolosov-Muskhelishvili formulas express stresses
σxx, σxyσyy and displacements ux, uy as

σxx + σyy = 4Re[ψ′(z)] (S3)
σyy − σxx + 2iσxy = 2[zψ′′(z) + χ′′(z)] (S4)

2µ(ux + iuy) = κψ(z)− zψ′(z)− χ′(z) (S5)

where ψ(z) and χ(z) with regard to the complex variable z = x+iy are analytical functions relating
to ϕ. The shear modulus µ = E

2(1+ν) and κ = (3 − ν)/(1 + ν) in a plane stress problem. E and ν

are the Young’s modulus and the Poisson’s ratio of cornea, respectively.

Consider the Mode I problem discussed in this work that an infinite plane with crack along the
x-axis, if external loads are symmetric with respect to the x-axis, then σxy = 0 along y = 0. This
important information leads to a correlation between functions ψ(z) and χ(z) that

zψ′′(z) + χ′′(z) + A = 0

in which A is a real constant. It is thus possible to rewrite the expressions of stresses and
displacements in Eqs. S3 through S5 by elaborately design one single function ZI , via ψ′ = 1

2(ZI+A).
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Thus ψ = 1
2(ẐI + Az), where Ẑ ′

I = ZI . And ZI is the so-called Westergaard function for Mode I
problems.

Figure S1. A crack in an infinite plane subjected to biaxial tension σ0.

For a typical crack problem shown in Fig. S1 that a 2D plane with a line crack of length 2a is
subjected to biaxial stress σ0 at infinity. The Westergaard function is given by

ZI =
σ0z√
z2 − a2

, A = 0. (S6)

And the corresponding vertical displacement of the upper crack surface is derived as

4µuy = (κ+ 1)ImẐI = (κ+ 1)
KI√
πa

√
a2 − x2; (S7)

where KI = σ0
√
πa is the intensity factor. Therefore, at the centre of the crack, Eq. S7 reduces to

uy0 =
κ+ 1

4µ
σ0a. (S8)

Note that the same procedures are carried out for Mode I crack with other boundary conditions,
ending in the expressions given in Eq. S7, the only difference being the expressions of KI .
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