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SUPPLEMENTARY DATA
Supplementary Figures

Figure S1. Marginal prior distributions of ρg with increasing standard deviations of the normally
distributed prior for rg (whose mean is 0), and a prior distribution of U(0, 1) for P . The marginal prior
distribution for ρg is approximately U(0, 1) when a N(0, 0.25) is imposed on rg. Thus, constraining the
prior for rg to a relatively narrow distribution results in a diffuse marginal prior for ρg.
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Figure S2. A set of trace plots for Model 4 parameters illustrating sampled values of each regression
coefficient and σΦ per chain throughout the post burn-in iterations. Visual inspection of trace plots is used
to evaluate convergence and mixing of the chains.
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Figure S3. Posterior distributions (black) and prior distributions (blue) of regression coefficients from
Model 4; dashed black lines denote 80% Bayesian confidence intervals, while solid red lines denote 0
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Figure S4. Posterior distributions (black) and prior distributions (blue) of autocorrelation parameters λ
(spatial) and ρ (temporal) from Model 4; dashed black lines denote 80% Bayesian confidence intervals.
Leave-future-out cross validation of Models 1–4 showed that the non-separable spatiotemporal dependence
structure of Model 4 was necessary for good predictive performance, despite the small ρ.
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Figure S5. Posterior distributions of regression coefficients from Models 1-4.
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APPENDICES
Appendix A: More on predictor variables
Mud: Unstructured habitat constitutes the majority of available shallow habitat in Chesapeake Bay, but
varies considerably in food availability and predation refuge Lipcius et al. (2005). Evidence suggested
unstructured mud may serve as an alternative nursery for juveniles where structurally complex habitat is
unavailable due to relatively abundant alternative prey and potential for juveniles to bury deep in the soft
substrate Mense and Wenner (1989); Rakocinski et al. (2003). Thus, in the earliest exploratory models, we
had included mean percent mud composition of substrates in each section-year as a continuous covariate, in
addition to those presented in Table 1. However, 80% Bayesian confidence intervals for the corresponding
regression coefficient of this variable consistently included 0, and inclusion of the variable did not otherwise
change inference results of the initial models. In contrast, the other variables, such as seagrass, management
status, and predator abundance, were always kept in our models regardless of their statistical importance
in explaining juvenile blue crab abundance, due to their implications on large-scale blue crab population
management. Because percent mud composition did not carry the same implications with respect to
management, it was excluded as a variable of interest in all models presented in this article.

Management: Although changes in the spatial distribution of fishing can impact abundances of
economically important species (e.g., Carson et al., 2017), we employed a general before-after management
term in lieu of a spatially-explicit term for the following reasons. First, although fishing pressure for
adults in tributaries varies spatially, juveniles in the size fraction 20–40 mm CW, which were targeted in
our study, are neither legal nor susceptible to the fishery due to their small size. For example, crab pot
mesh size is large enough that small crabs (<40 mm CW) can easily escape. Moreover, since all mature
female blue crabs in Chesapeake Bay migrate to the mouth of the estuary for spawning and larval release
(Epifanio, 2019), spatial patterns in fishing pressure are decoupled from juvenile and postlarval abundance
at sub-estuary scales.

Salinity: Juvenile blue crabs are tolerant of a wide range of salinity regimes ranging from nearly freshwater
to hypersaline (Guerin and Stickle, 1992). Hence, it is unlikely that salinity alone would describe patterns
in juvenile blue crab abundance. Rather, any changes in blue crab abundance along a salinity gradient are
most likely reflective of changes in predator communities (e. g., Posey et al., 2005). Moreover, patterns
in juvenile abundance along a turbidity gradient may be indicative of changes in predator efficiency. Due
to the substantially collinear nature of salinity and turbidity, we chose to explicitly model turbidity and
predator abundance and exclude salinity, which could better account for the biological patterns if present.
Appendix B: Defining areal units

Note that despite the arbitrary nature of areal unit definitions in practice, the one we employed in our
work here did not meaningfully influence our results, or bias, our inference. In fact, initially, we explored
numerous areal unit configurations when aggregating spatially random trawls. Alternative configurations
included dividing each tributary into i) ten sections whose lengths were tributary dependent, ii) sections
based on morphologically meaningful characteristics (e.g., branching structures and choke points), and
iii) sections ∼2km in length along the tributary axis. In all cases, parameter estimates from models were
practically identical. The final areal unit configuration was chosen based on the high number of areal units
per year produced, and only a single section-year had 0 trawl tows.

Appendix C: Model inference, validation, and predictive performance
We reported statistical inference at the 80% Bayesian confidence level throughout this paper. The

International Panel on Climate Change (IPCC), which employs Bayesian methods, designates ≥66% as
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“likely” and ≥90% as “very likely” (Chen et al., 2021). For practical implications, a confidence level
between these values, e.g., 80%, therefore suggests a reliable range of parameter values.

Cross validation (CV) is a robust, generic method to adjudicate between competing statistical models.
Unlike information theoretic criteria (e.g., AIC, BIC, DIC), cross validation assesses predictive performance
directly by separating the data in a part that is used for fitting (i.e., training set) and another used to assess
predictive adequacy (i.e., test set). Cross validation preference goes to the model that best predicts the
out-of-sample test set withheld.

Cross validation is helpful in determining relative model generalizability. In a Bayesian CV framework,
prediction intervals are computed using the posterior predictive distributions of the excluded values in the
test set based on posterior distributions of model parameters to simulate the training set. Generalizability is
determined based on the observed coverage, i.e., the proportion of excluded values which are successfully
captured by their respective prediction intervals.

We used 80% prediction intervals to infer model performance of our suite of candidate models. Models
yielding an observed coverage differing greatly from the nominal Bayesian predictive confidence level
of 80% may indicate underfitting/overfitting. Cross validation results from Models 1, 2, 3a, and 3b, all
indicated underfitting (being less complex than Model 4) and poor predictive performance. In contrast,
posterior prediction intervals of Model 4 contained 81% of excluded data (n = 36), indicating overall
superior predictive performance relative to all other candidate models. Hence, we selected Model 4 as the
model which best represents our observed data as well as the most generalizable model.

In contrast with simpler models, Model 4 is characterized by greater uncertainty in posterior distributions
of predictor coefficients as well as posterior predictive confidence intervals used in cross validation (Figs. 2
and S5). This is a frequent characteristic of models with increasing complexity. Complex models (with a
larger number of unknown model parameters) lead to more uncertainty in the inference, whereas simpler
models which are inadequate in capturing latent dependence processes would give incorrect inference,
irrespective of the amount of uncertainty.
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