
ONLINE APPENDIX A: Stability of the consumer-resource interaction

The consumer-resource model (Equation (1) in the main text) yields three equilibria: the trivial equi-

librium (R? = 0, C? = 0), a boundary equilibrium (R? = 1/q, C? = 0), and an interior equilibrium:

R? =
d

a( f − dh)

C? =
r f (a( f − dh)− qd)

a2( f − dh)2

(A.1)

The Jacobian matrix of Equation (1) is given by:

J =

 −rqR? + a2hR?C?

(1+ahR?)2 − aR?

1+ahR?

f aC?

(1+ahR?)2 0

 .

The interior (coexistence) equilibrium is stable if Tr(J) < 0 and det(J) > 0. Note that Tr(J) = J11

and det(J) = J12 J21 (because J22 = 0). Since J12 < 0, det(J) > 0 always. Hence, stability of the

coexistence equilibrium is determined by whether J11 < 0. The stability boundary at which the

consumer-resource system undergoes a bifurcation from a stable focus to limit cycle oscillations is

given by J11 = 0 (Murdoch et al., 2003):

rd(ah(− f + dh) + ( f + dh)q))
f a( f − dh)

= 0 (A.2)

Solving J11 = 0 for a and rearranging terms yields the stability boundary:

ah
q

=
f + dh
f − dh

. (A.3)

From Equation (A.1) we see that positivity of the resource equilibrium requires that e > dh, i.e., the

consumer’s conversion efficiency should exceed the fraction of its lifetime spent handling resources.

This means that the right hand side of Equation (A.3) is positive, and unlikely to exceed unity by

a large amount unless the consumer spends a large fraction (> 25%) of its lifetime handling prey.

The important consequence is that the stability of the coexistence equilibrium is driven mainly by the
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ratio ah
q (q > 0) which scales the negative and positive feedback effects on species’ per capita growth

rates).

The consumer-resource model (Equation (1) in the main text) yields a resource isocline that is

a quadratic (Fig. 1a), the maximum of which is the critical resource abundance (Rc) at which the

interaction moves from a stable point equilibrium (focus) to limit cycle oscillations (Rosenzweig,

1971). This is derived using the following steps.

Note that the resource isocline depicts the resource species’ per capita growth rate:

1
R

dR
dt

= r(1− qR)− aC
1 + ahR

. (A.4)

At equilibrium, the resource species’ per capita growth is zero. We solve 1
R

dR
dt = 0 for consumer

abundance C, which yields:

C =
r(1− qR)(1 + ahR)

a
. (A.5)

Now we take the derivative of C with respect to R, which gives us the rate at which consumer

abundance changes relative to resource abundance:

∂C
∂R

= r(h− q
a
− 2hqR). (A.6)

The last step is to set the derivative to zero and solve for R, which gives us the critical resource

density at which the consumer-resource interaction undergoes a transition from a stable equilibrium

to limit cycle oscillations:

Rc =

ah
q − 1

2ah
. (A.7)

As can be seen, the critical resource density is determined entirely by the relative magnitudes of

ah and q, which scale the positive and negative feedback effects on the resource per capita growth

rate. Of note, although it is the product ah that determines strength of positive feedback, it is the

handling time that generates such feedback. The attack rate only serves to mediate the strength of

positive feedback.
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ONLINE APPENDIX B: Taylor series approximation of mean fitness

When the attack rate is evolving with the handling time as a constraint, the fitness of an individual

consumer is given by its per capita growth rate WC(x, R):

WC(x, R) = f
a(x)R

1 + a(x)hR
− d. (B.1)

The mean fitness is obtained by integrating the fitnesses of all consumer individuals over all values

of x:

WC(x, R) =
∫ +∞

−∞
WC(x, R)p(x, x)dx. (B.2)

This integral cannot be solved analytically. However, as it involves the expectation of a ratio, i.e.,

E[WC(x, R)] = E

[
a(x)R

1 + a(x)hR

]
, (B.3)

we can use the Taylor series expansion of this ratio to approximate the integral (Heijmans, 1999). For

notational simplicity, let f = A
B where A = a(x)R and B = 1 + a(x)hR with means µA and µB. Then

a Taylor series expansion about the point (µA, µB) to the first order is given by:

f (A, B) = f (µA, µB) + f ′A(µA, µB)(A− µA) + f ′B(µA, µB)(B− µB). (B.4)

Taking expectations of both sides, we get:

E
[

f (A, B)
]
= E

[
f (µA, µB) + f ′A(µA,µB)

(A− µA) + f ′B(µA,µB)
(B− µB)

]

≈ E

[
f (µA, µB)

]
+ E

[
f ′A(µA,µB)

(A− µA)

]
+ E

[
f ′B(µA,µB)

(B− µB)

]

= E

[
f (µA, µB)

]
+ f ′A(µA,µB)

E

[
(A− µA)

]
+ f ′B(µA,µB)

E

[
(B− µB)

]
.

(B.5)
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Given that E
[
(A− µA)

]
= 0 and E

[
(B− µB)

]
= 0, and that µA = E[A] and µB = E[B], we have:

E
[

f (A, B)
]
≈ E

[
f (µA, µB)

]
=

E[A]

E[B]
. (B.6)

Applying this to the expression for mean fitness (Equation (B.3)), we get:

E[WC(x, R)] =
E[a(x)R]

E[1 + a(x)hR]

=
E[a(x)]R

1 + E[a(x)]hR

(B.7)

where

E[a(x)] =
∫ +∞

−∞
a(x)p(x, x̄)dx = a(x) (B.8)

is given by:

a(x) =
ατa√

σa2 + τa2
e
− (x̄−θa)2

2(σa2+τa2) . (B.9)

Numerical analyses show that the approximation of mean fitness (Equation (B.2) using Equation

(B.7) is valid in the limit of weak phenotypic variance and low to moderate stabilizing selection

(Fig. B1). The approximation works well over the relevant ecological parameter space as well (Fig. B2).

The consumer’s death rate is the most sensitive parameter, with higher mortality rates causing greater

deviation at higher values of the phenotypic variance (Fig. B2(c)).

ONLINE APPENDIX C: Sensitivity analysis

Ecological dynamics: propensity for extinction as a function of oscillatory

tendency

High attack rates and long handling times increase the strength of positive feedback relative to nega-

tive feedback, and lead to large-amplitude oscillations that predispose consumer-resource interactions

to deterministic collapse or stochastic extinction at low abundances. As can be seen from the stability

boundary that delineates a stable point equilibrium from oscillatory dynamics Equation (A.3), higher

values of the consumer’s conversion efficiency ( f ) and death rate (d) can increase the oscillatory ten-
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dency, while higher values of resource self-limitation (q) decrease it. Because the critical resource

density at which the system undergoes a bifurcation from a stable equilibrium to limit cycle is de-

termined by the quantity ah
q (Equation (A.7)), resource self-limitation has the strongest effect on the

oscillatory tendency of consumer-resource interactions (Fig. C1).

Eco-evolutionary dynamics: roles of heritability, phenotypic variation, and

self-limitation strength on attack rate and handling time evolution

Higher heritabilities lead to faster evolutionary dynamics, a finding reported in previous studies of

eco-evolutionary dynamics of species interactions (Schreiber et al., 2011; Vasseur et al., 2011), but do

not alter the qualitative nature of the long-term evolutionary outcomes (Fig. C2). When the attack

rate and handling time evolve jointly, with each trait under direct stabilizing selection, lower levels

of phenotypic variation lead to the evolution of higher attack rates or longer handling times, but

oscillation-induced extinction restricts attack rate - handling time combinations such that high attack

rates are associated with short handling times and vice versa (Fig. C3). As with ecological dynamics

resource self-limitation has a strong effect on the combination of attack rates and handling times that

evolve, with stronger self-limitation allowing the evolution of higher attack rates and longer handling

times (Figs. C2-C3).
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Figure B1. Numerical evaluations of mean fitness (Appendix B, Equation (B.2)) and its Taylor series approximation to the
first order (Appendix B, Equation (B.7)) when the consumer’s attack rate evolves with the handling time as a constraint.
The black and red circles depict, respectively, the mean fitness and its Taylor approximation as a function of phenotypic
variance (σa) for varying levels of stabilizing selection strength (τa). Parameter values are: r = 5.0, q = 0.04, θa = 1.0, α =
2.0, h = 0.1, f = 0.2, d = 0.1.
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Figure B2. Numerical evaluations of mean fitness (Appendix B, Equation (B.2) and its Taylor series approximation to the
first order (Appendix B, Equation (B.7) when the consumer’s attack rate evolves with the handling time as a constraint.
The black and red circles depict, respectively, the mean fitness and its Taylor approximation as a function of phenotypic
variance (σa) for varying levels of the handling time (panel (a)), resource self-limitation (panel (b)), consumer’s mortality
rate (panel (c)) and conversion efficiency (panel (d)). Other parameter values are: r = 5.0, θa = 1.0, α = 2.0, f = 0.2.
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Figure C1. Attack rate - handling time combinations for persistent consumer-resource interactions superimposed on the
stability region for the consumer-resource equilibrium. Panels on the left column depict the combinations that remain after
deterministic collapse of interactions with high attack rates and long handling times, and panels on the right column, those
that remain after deterministic collapse and stochastic extinction at low abundances. In all panels, the blue shaded region
depicts the attack rate - handling time combinations that yield a stable equilibrium. Panels (a)-(d)) depict the effects of
strong (q = 0.1; panels (a) and (b)) and weak resource self-limitation (q = 0.02, panels (c) and (d)) with r = 5, e = 0.5, d = 0.1.
Panels (e)-(h) depict the effects of lower (e = 0.2; panels (e) and (f)) and higher (e = 0.5; panels (g) and (h)) conversion
efficiency with r = 5, d = 0.1, q = 0.04. Panels (i)-(l) depict the effects of lower (d = 0.05; panels (i) and (j)) and higher
(d = 0.2; panels (k) and (l)) consumer mortality with r = 5, e = 0.5, q = 0.04.9
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Figure C2. Effects of heritability on attack rate evolution under deterministic collapse of unstable interactions (panels
(a)-(f)) and deterministic collapse combined with extinction at low abundances (panels (g)-(l)). Panels (a)-(c) and (g)-(i)
depict evolutionary outcomes when heritability (ha

2) is 0.1; panels (d)-(f) and (j)-(l) depict the outcomes when ha
2 = 0.2.

Increase in heritability has no qualitative effect on evolutionary outcomes (compare panel (a) with (d), and (g) with (j)).
It does however lead to faster evolutionary rates (compare panel (c) with (f), and (i) with (l)). Parameter values are:
θa = 1.0, α = 1.0, σ2

a = 0.5, r = 5.0, d = 0.1, e = 0.2, q = 0.04.
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Figure C3. Effects of heritability on handling time evolution when the handling time is a consumer trait. Panels (a)-(f)
depict evolutionary outcomes under deterministic collapse, and panels panels (g)-(l), deterministic collapse combined with
extinction at low abundances. Panels (a)-(c) and (g)-(i) depict evolutionary outcomes when heritability (ha

2) is 0.1; panels
(d)-(f) and (j)-(l) depict the outcome when ha

2 = 0.2. Increase in heritability has no qualitative effect on evolutionary
outcomes (compare panel (a) with (d), and (g) with (k)). It does however lead to faster evolutionary rates (compare panel
(c) with (f), and (i) with (m)). Parameter values are: θh = 1.0, η = 0.1, σ2

h = 0.5, r = 5.0, d = 0.1, e = 0.2, q = 0.04.
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