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Following [1] we derive a general expression for the free energy of a planar, negatively charged 

surface that can bind cations, which we then use to consider two cases: first, two monovalent 

ions, e.g., Na+ and H+, compete for binding to charged groups at the bilayer/solution interface; 

and second, one monovalent and one divalent, e.g., Na+ and Ca2+, compete for binding to 

charged groups at the bilayer/solution interface.  

 

1 General Considerations 

When dGi moles per unit area of a potential-determining (cat)ion of type i partition from the bulk 

electrolyte to the surface, the change in surface free energy per unit area (df ) is given by: 
 

  (1) 

where  and  denote the electrochemical potential of ion i at the surface and in the bulk 

solution. (Ion adsorption will not alter the bulk concentrations measurably, and the bulk 

electrochemical potential ( ) is constant.)  can be expressed as the sum of a chemical and an 

electrical contribution: 
 
 , (2) 

where yD is the mean electrostatic potential at the surface (due to the diffuse double layer), zi the 

valence of ion i, e the elementary charge, and  the chemical contribution to . Eq. 2 defines 

 and provides a formal separation of the electrostatic and non-electrostatic contributions to . 

 

When ions bind to the surface, the surface charge density (and the surface potential) change and 

the change f (Eq. 1) is obtained by integrating df with respect to the change in surface charge (s). 

Combining Eqs. 1 and 2 : 
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where si and sf denote the surface charge densities of the initial state (usually si = 0) and final 

(usually the equilibrium) states, and the two integrals in Eq. 3 represent the electrical and the 

chemical contributions to f. 

 

To evaluate the first integral in Eq. 3 we need to know YD as a function of s. Using the Gouy-

Chapman theory of the diffuse double layer, e.g., [2], the YD-s relation becomes: 
 

  (4) 

where e0 and er denote the permittivity of free space and the relative dielectric constant, 

respectively, kB Boltzmann’s constant, T the temperature in Kelvin, and Ci the bulk concentration 

of ion type i. 

 

To evaluate the second integral we need to know  as a function of Gi, i.e. the binding isotherm 

of (cat)ion type i to the phospholipid head groups, where we assume the binding isotherm is a 

stoichiometric Langmuir isotherm and that  does not depend explicitly on yD. Following [1], 

it becomes helpful to introduce the function yS(s) 
 
 , (5) 

such that the equilibrium value of s (s0) can be expressed as a function of the equilibrium values 

of either yD or yS: 
 
  (6) 

The total amount of bound charge is  
 

 , (7) 

and combining Eqs. 3, 5 and 7 we obtain 
 

 , (8) 

σ2(ψD ) = 2 ⋅ ε0εr ⋅ kBT Ci ⋅ exp{−zieψ
D / kBT}−1⎡⎣ ⎤⎦

i=1

n
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which forms the basis for the remaining calculations. 

 

Chan and Mitchell (2) analyzed the situation where a single ion type can bind to a monolayer. 

We need to calculate the free energy for the case where two different cations can bind. We treat 

two cases: first, the case of two monovalent cations; second, the case of one monovalent and one 

divalent cation. 

 

2 Two Monovalent Cations 

Consider two monovalent cations, e.g. Na+ and H+, that can bind to a negatively charged bilayer 

and compete for the same set of binding sites, and a single anion, e.g. Cl–. The binding reactions 

are given by: 

P– + Na+ « PNa; association constant KNa, 

P– + H+ « PH; association constant KH. 

[P–], [PNa] and [PH] denote the surface concentrations of negatively charged lipid molecules (no 

bound a cation), and lipid molecules with a bound Na+ and lipid molecules with a bound H+: 
 

  (9) 

 

  (10) 

where Ptot is the total surface concentration of all types of lipid molecules. [Na+]0 and [H+]0 the 

aqueous cation concentrations at the surface, which are related to the respective bulk 

concentrations: 
 

  (11) 

 

The maximum surface charge density, smax, is 

[PNa]= KNa ⋅[P
− ]⋅[Na+ ]0

[PH]= KH ⋅[P
− ]⋅[H+]0

[P]tot = [P
− ]+ [PNa]+ [PH]

σ = −e ⋅[P− ]

[Na+ ]0 = [Na
+ ]⋅exp −eψS kBT( )

[H+ ]0 = [H
+ ]⋅exp −eψS kBT( )
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  (12) 

or 
 

 . (13a) 

(If the two monovalent cations bind competitively and independently to two different sites, e.g. 

phosphate and carboxyl groups, Eq. 13 would become: 
 

  (13b) 

where KCH, KPH, KCNa and KPNa denote the association constants for H+ and Na+ binding to the 

carboxyl and phosphate groups, respectively.) 

 

Denoting [P]tot, [PH] and [PNa] by GS, GH and GNa, respectively, then: 
 

   (14) 

Further, introducing the ratio  
 

  (15) 

we can express , dGH and dGNa as: 
 

   (16) 

σmax = −e ⋅[P]tot

       = −e ⋅([P− ]+ [PNa]+ [PH]) = −e ⋅[P− ]⋅(1+ KNa ⋅[Na+ ]0 + KH ⋅[H
+ ]0 )

σ ψS( ) = −e ⋅[P− ]=
σmax
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+]0

σ ψS( ) = σmax ⋅
1

1+ KCH ⋅[H
+]0 + KCNa ⋅[Na

+ ]0
+ 1
1+ KPH ⋅[H

+]0 + KPNa ⋅[Na
+ ]0

−1
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

σmax = −e ⋅ΓS
σ(ψS) = −e ⋅(ΓS − ΓH − ΓNa ).

C =
ΓNa
ΓH

=
[Na+ ]⋅KNa
[H+]⋅KH

dσ

dσ = e 1+C( )dΓH

dΓH = dσ
e ⋅ 1 +C( )

dΓNa =
dσ ⋅C
e ⋅ 1 +C( )
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Using the relation , Eq. 8 can be expressed as 
 

 . (17) 

 

To continue, we need the expression for , which can be obtained from Eqs. 11 and 13a:  
 
   (18) 

or 
 

  (19) 

where Z= KH×[H+] + KNa×[Na+] = [H+]×KH×(1+C). 

 

Then, by calculating the second term of the integral in Eq. (8), and changing the integrating 

variable for the first term of the integral from s toyD, Eq. (8) can be rewritten as: 
 

  (20) 

where the integral describes the electrical contribution to the free energy and the remaining terms 

describe the chemical contribution. 

 

We consider two different approaches to evaluating Eq. 20: 

2.1 The Initial State is a Neutral Surface 

µH
B −µH

S = µNa
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S = eψS(σ)

f = ψD(σ) 
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σf∫ dσ − (µH
B −µH

S )
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∫  dΓH − (µNa
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S )
initial

final

∫  dΓNa

ψS(σ)

σ(ψS ) = σmax 1+ Z ⋅exp −eψS kBT( )⎡
⎣

⎤
⎦

ψS(σ) =
−kBT
e

ln
σmax − σ

σ
⎧
⎨
⎩

⎫
⎬
⎭
− lnZ

⎡

⎣
⎢

⎤

⎦
⎥

f = − σ(ψD )
ΨD σ i( )
ΨD σf( )
∫  dψD

+ σ fψ
D(σ f )− σ iψ

D(σ i )−
kBT
e

⋅(σ f − σ i ) ⋅ ln{Z}
⎛
⎝⎜

⎞
⎠⎟

−
kBT
e

⋅ (σmax − σ f ) ⋅ ln{σmax − σ f }− (σmax − σ i ) ⋅ ln{σmax − σ i}+ σ f ⋅ ln{σ f }− σ i ⋅ ln{σ i}( ),
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In this case si = 0 and yS = yD = 0, and the final state, sf = s0 with the associated values of yS 

and yD, is reached by dissociation of the potential determining ions. (This approach is useful for 

comparing the electrical contribution to f in different situations.) Eq. 20 then reduces to: 
 

  (21) 

cf., Eq. 3.4 in [1]. Using Eq. 4 and the integration variable x = exp{–eyD/kBT}: 
 

  (22) 

where x0 = exp{–ey0/kBT}, x0 >1 because y0 <0. 

 

The electrical contribution to the free energy in Eq. 20 is 
 

  (23) 

 

and the cation binding per surface area is: 
 

  (24) 

 

2.2 The Initial State is a Surface With no Bound Ions 

f = − σ(ψD ) 
0

Ψ0∫ dψD + σ0ψ0 −
kBT
e

⋅σ0 ⋅ lnZ − ln
σmax − σ0

σ0

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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⋅σmax ⋅ ln
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⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= − σ(ψD )
0

Ψ0∫  dψD −
kBT
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⋅σmax ⋅ ln 1−
σ0

σmax

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

f = −
kBT
e

⋅ 2 ⋅ ε0εr ⋅RT ⋅ [Na
+ ]+ [H+]( ) ⋅ x + 1x − 2

⎛
⎝⎜

⎞
⎠⎟1

x0∫
1
x
dx −

kBT
e

⋅σmax ⋅ ln 1−
σ0
σmax

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= −
2kBT
e

⋅ 2 ⋅ ε0εr ⋅RT ⋅ [Na
+ ]+ [H+]( ) ⋅ x0 + 1

x0
− 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−
kBT
e

⋅σmax ⋅ ln 1−
σ0
σmax

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

fel = −
kBT
e

⋅ 2 ⋅ ε0εr ⋅RT ⋅ [Na
+ ]+ [H+]( ) ⋅ x + 1x − 2

⎛
⎝⎜

⎞
⎠⎟1

x0∫
1
x
dx + σ0ψ0

= −
2 ⋅ kBT
e

⋅ 2 ⋅ ε0εr ⋅RT ⋅ [Na
+ ]+ [H+]( ) ⋅ x0 + 1

x0
− 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ σ0ψ0

ΓNa = [PNa]= −KNa ⋅[Na
+ ]⋅ σ
e
⋅ x0

ΓH = [PH]= −KH ⋅[H
+]⋅ σ
e
⋅ x0.
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In this case  si = smax; the final state is the equilibrium at sf = s0. (This approach is useful for 

comparing the chemical contribution to f.) Rearranging Eq. 20: 
 

  (25) 

Again, using Eq. 4 and the integration variable x = exp{–eyD/kBT}: 
 

  (26) 

 

3 Monovalent and Divalent ions 

We now consider the case of one divalent and one monovalent cation, e.g., Na+ and Ca2+, which 

can bind to the negatively charged bilayer. The cations bind to a single type of sites, such that 

their interaction is competitive. We neglect any contribution from H+ (which should be justified 

at pH 7), and Cl- is the only anion. The binding reactions are described by: 

P– + Na+ « PNa; association constant KNa, 

P– + Ca2+ « PCa+; association constant KCa. 

 

f = − σ(ψD )
ψD σmax( )
ψ0∫  dψD + σ0ψ0 − σmaxψ

D(σmax )+

+
kBT
e

σ0 ln
σmax − σ0

σ0

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
− ln{Z}

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+
kBT
e

σmax lnZ − ln{σmax − σ0}+ ln{σmax}⎡⎣ ⎤⎦

= − σ(ψD )
ψD σmax( )
ψ0∫  dψD + σmax ⋅ ψ0 − ψ

D(σmax )+
kBT
e

⋅ ln
σmax

σ0

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= {σmax − σ(ψD )}
ψD σmax( )
ψo∫  dψD +

kBT
e

⋅σmax ⋅ ln
σmax

σ0

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

f = −
kBT
e

σmax + 2ε0εrRT ([Na
+ ]+ [H+]) x + 1

x
− 2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x σmax( )

x0∫
1
x
dx +
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e

σmax ln
σmax
σ0

= −
kBT
e

σmax ln
x0

x(σmax )
− ln

σmax
σ0

⎛

⎝⎜
⎞

⎠⎟
−

−
2kBT
e

2ε0εrRT ([Na
+ ]+ [H+]) x0 +

1
x0

− x(σmax )−
1

x σmax( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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  (27) 

and 
 

  (28) 

Inserting Eqs. 28 in Eq. 1, 
 
  (29) 

and we recover Eq. 8. Changing the integration variable: 
 

  (30) 

The sum of the first three terms denotes the electrical contribution to free energy; the sum of the 

last three terms denotes the chemical contribution. 

 

Again it is helpful to consider two different choices of initial conditions. First, however, we need 

to consider how to find the correct values for s0 and y0. Again, we assume the binding of Na+ 

and Ca2+ is described by the Langmuir isotherm. Similarly to the solution for s(yS) for Na+ and 

H+ (Eqs. 11 and 13), we find (e.g., [3; 4]): 
 

  (31) 

At equilibrium s(yS) = s(yD) and 
 

 , (32) 

where . 

[PNa]= ΓNa = KNa ⋅[P
− ]⋅[Na+ ]0

[PCa+]= ΓCa = KCa ⋅[P
− ]⋅[Ca2+ ]0

[P]
tot
= [P− ]+ [PNa]+ [PCa+]

σ = −e ⋅[P− ]+ e ⋅[PCa+]= −e ⋅ ΓS − ΓNa − 2ΓCa( )

µNa
S = µNa

S + eψD; µNa
B −µNa

S = eψS

µCa
S = µCa

S + 2eψD; µCa
B −µCa

S = 2eψS

df = eψD ⋅(dΓNa + 2dΓCa )− (µNa
B −µNa

S )dΓNa − (µCa
B −µCa

S )dΓCa = ψD(σ)dσ − ψS(σ)dσ

f = − σ(ψD )
Ψi

D

Ψf
D

∫  dψD + σ fψ f
D − σ iψ i

D + σ(ψS ) 
Ψi

S

Ψf
S

∫ dψS − σ f ⋅ψ f
S + σ i ⋅ψ i

S

σ ψS( ) = σmax ⋅ 1− KCa ⋅[Ca
2+ ]⋅exp{−2eψS kBT}{ }

1+ KNa ⋅[Na
+ ]⋅exp(−eψS kBT )+ KCa ⋅[Ca

2+ ]⋅exp{−2eψS kBT}

σ ψD( ) = ± 2ε0εrRT ⋅ [Na+ ]⋅(x −1)+ [Ca2+ ]⋅(x2 −1)+ ([Na+ ]+ 2 ⋅[Ca2+ ]) ⋅ 1
x
−1

⎛
⎝⎜

⎞
⎠⎟

x = exp −eψS kBT( )
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The solution to Eq. 32 involves a seventh-degree polynomial in , which can 

have more than one real solution. s(yD) and yD may both be either positive or negative and so 

may s0 and Y0 because Ca2+ binds to DOPS with a 1:1 stoichiometry [3; 4]. The surface charge 

density therefore can change sign at high [Ca2+]. From Eq. 31, s = 0 and y = 0 when [Ca2+] = 

exp{2eyS/kBT}/KCa (8.33 mM for DOPS bilayers in 0.1 M NaCl). For [Ca2+] lower than this, s0 

and y0 are negative, for higher [Ca2+] they are positive, and 0 < x0 < 1. 

 

Again we consider two different approaches to evaluate Eqs. 31 and 32. 

3.1 The Initial State is a Neutral Surface 

In this case is si = 0 and yS = yD = 0, the final state, sf = s0, is reached by dissociation of the 

potential determining ions. The electrical contribution to the free energy becomes, again 

changing the integration variable to x = exp{–eYD/kBT}: 
 

  (33) 

with the sign in front of the radical is equal to sign of the surface charge. Cation binding per area 

unit is described by: 
 

 . (34) 

The total energy density is: 
 

  (35) 

where  (from s(yS) = 0). 
 

x0 = exp −eψ0
S kBT( )

fel = ±
kBT
e

⋅ 2ε0εrRT ⋅

[Na+ ]⋅(x −1)+ [Ca2+ ]⋅(x2 −1)+ ([Na+ ]+ 2 ⋅[Ca2+ ]) ⋅ 1
x
−1

⎛
⎝⎜

⎞
⎠⎟
⋅ 1
x
dx

1

x0∫ +σ0ψ0

[PNa]= − 1
1− KCa ⋅[Ca2+ ]⋅ x0

2 ⋅
σ
e

 and [PCa+ ]= −
KCa ⋅[Ca2+ ]x0

2

1− KCa ⋅[Ca2+ ]x0
2 ⋅

σ
e

f = − σ(ψD )
0

Ψ0∫  dψD + σ(ψS )
ΨS 0( )
Ψ0∫  dψS = I1 + I2

ψS(0) = −(kBT / e) ln{1/ KCa ⋅[Ca
2+ ]}
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  (36) 

where the “–“ sign is for negative surface charge density. 
 

  (37) 

where xS = exp{–eyS/kBT} 

 

3.2 The Initial State is a Surface With no Bound Ions 

In this case si = smax (with s(yS)= smax such that yS(smax) = ¥), and the final state is sf = s0 

(with yD(smax) finite). The equilibrium condition is described by Eq. 6. To circumvent the 

yS(smax) = ¥ problem, it is helpful to calculate f for the initial state being si = smax+ e where 

smax is negative and e is positive and small. Then one can evaluate f as fe|e®0, where 
 

  (38) 

 

Introducing the notation xe = exp{–eyS(smax + e)/kBT} where , and replacing s with 

smax + e in Eq. 30 leads to: 
 
 , (39) 

where we select the solution that satisfies the limit conditions (the one with a minus sign in front 

of the radical). Expanding the expression for xe, the leading terms for e << 1 are: 
 

I1 = ∓
kBT
e

2ε0εr RT ⋅

[Na+ ]⋅(x −1)+ [Ca2+ ]⋅(x2 −1)+ ([Na+ ]+ 2 ⋅[Ca2+ ]) 1
x
−1

⎛
⎝⎜

⎞
⎠⎟1

x0∫
1
x
dx

I2 =
kBT
e

⋅σmax ⋅
KNa ⋅[Na

+ ]+ 2 ⋅KCa ⋅[Ca
2+ ]⋅ xS

1+ KNa ⋅[Na
+ ]⋅ xS + 2 ⋅KCa ⋅[Ca

2+ ]⋅ xS
2 −

1
xS

⎡

⎣
⎢

⎤

⎦
⎥dxS1

KCa ⋅[Ca
2+ ]

x0∫

=
kBT
e

⋅σmax ⋅ ln 1+ KNa ⋅[Na
+ ]⋅ x0 + KCa ⋅[Ca

2+ ]⋅ x0
2{ }⎡⎣ ⎤⎦

−
kBT
e

⋅σmax ⋅ ln
x0

K ⋅Ca [Ca
2+ ]

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− ln 2+

KNa ⋅[Na
+ ]

KCa ⋅[Ca
2+ ]

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

fε = − σ(ψD )
ΨD σmax( )
Ψ0∫  dψD − σmaxψ

D(σmax )+ σ(ψS )
ΨS σmax+ε( )
Ψ0∫  dψS + (σmax + ε)ψS(σmax + ε)

= I1 − σmaxψ
D(σmax )+ I2 + (σmax + ε)ψS(σmax + ε)

lim xε |ε→0= 0

xε
2[Ca2+ ]KCa (2σmax + ε)+ xε[Na

+ ]KNa (σmax + ε)+ ε = 0
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, 

and  

 . (40) 

The last term in Eq. 38 therefore can be approximated as: 
 

  (41) 

 

To evaluate I2, the third term in fe (Eq. 38), it is helpful to use Eq. 32, change the integration 

variable to xS = exp{–eYS/kBT} and expand the integrand into the two ratios: 
 

  (42) 

where x0 = exp{–ey0/kBT}. Simplifying the expression of fe, and let e ® 0: 
 

  (43) 

Using Eq. 4, the first term in Eq. 43 can be evaluated as 
 

 , (44) 

where , which can be solved for YD(smax). 

 

It is helpful to separate the second term in Eq. (37) into two integrals: one with integration limits 

1+ A(ε)ε ≈1+ 1
2
A(0)ε  and  A+ B(ε)ε

C + D(ε)ε
≈ A+ B(0)ε
C + D(0)ε

= A
C

1+ B(0)
A

− D(0)
C

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

xε ≈ − 1
[Na+]KNaσmax

ε

(σmax + ε)ψ
S(σmax + ε) = −

kBT
e

σmax ln − ε
[Na+ ]KNaσmax

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ A(ε)

lim A(ε) |ε→0= 0

I2 =
kBT
e

σmax
[Na+ ]KNa + 2[Ca

2+ ]KCaxS
1+ [Na+ ]KNaxS + 2[Ca

2+ ]KCaxS
2 dxS −

1
xS
dxSxε

x0∫xε

x0∫
⎡

⎣
⎢

⎤

⎦
⎥

=
kBT
e

σmax ln 1+ [Na
+ ]KNax0 + [Ca

2+ ]KCax0
2{ }− ln x0⎡⎣ ⎤⎦

−
kBT
e

σmax ln 1+ [Na
+ ]KNaxε + [Ca

2+ ]KCaxε
2{ }− ln xε⎡⎣ ⎤⎦

f = −σmaxψ
D σmax( )− σ ψD( )  dψD

ψD σmax( )
ψ0∫ +

kBT
e

σmax log
1
x0

+ [Na+ ]KNa + [Ca2+ ]KCax0

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

σmax
2 = 2ε0εrRT [Na+ ](xmax

D −1)+ [Ca2+ ]((xmax
D )2 −1)+ ([Na+ ]+ 2[Ca2+ ]) 1

xmax
D −1

⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

xmax
D = exp{−eψD(σmax ) kBT}
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YD(smax) and 0; and one with the limits 0 and Y0. For negative potentials we use the formula for 

s with a minus in front of the radical; for positive potentials we use a plus in front of the radical. 

 

To evaluate I1, the first term in Eq. , we change integration variable, to x, and I1 becomes: 
 

  (45) 

The sum I1 + I2 provides the desired expression for f. All the functions are known, and the 

integrals can be solved (numerically, if not analytically). The integrals were evaluated using 

Maple (Maplesoft, Waterloo, Canada), to calculate the electrostatic component to free energy per 

molecule (in kBT units) for a DOPS bilayer for different cations concentrations, using the 

following association constants: for Na+, 0.6 M-1 [5]; for Ca2+, 12 M-1; for Mg2+, 8 M-1 [4] and 

for H+ , ~ 4000 M-1 (based on a pK value of the carboxyl group in DOPS of 3.6 in 0.1 M [Na+] 

[6]. 
  

I1 =
kBT
e

2ε0εr RT [Na+ ](x −1)+ [Ca2+ ](x2 −1)+ ([Na+ ]+ 2[Ca2+ ]) 1
x
−1

⎛
⎝⎜

⎞
⎠⎟xmax

D

1

∫
1
x
dx

−
kBT
e

2ε0εr RT [Na+ ](x −1)+ [Ca2+ ](x2 −1)+ ([Na+ ]+ 2[Ca2+ ]) 1
x
−1

⎛
⎝⎜

⎞
⎠⎟
1
x
dx

1

x0∫
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