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Supplementary figures and tables 

  

 

Supplement Fig.S1. Initial parcellation, confidence mask and MSGCN parcellation maps 

of a single subject.  

Since fMRI signals are easily contaminated by various types of noises, the initial parcellation 

is also sensitive to small changes in functional connectivity and thus may contain isolated 

clusters in brain parcels. Such noisy patterns were greatly suppressed in the MSGCN 

parcellation by smoothing the changes of functional connectivity profiles within a small 

neighboring area in the cortical surface using high-order graph convolutions.   
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Supplement Fig.S2 Comparison of functional homogeneity and reliability of brain 

parcellation derived from different approaches.  

a) Resting-state functional homogeneity of different brain parcellations, including the group-

registered Schaefer400 atlas, MSGCN individual parcellation in an inductive way (MSGCN in 

the paper), MSGCN individual parcellation in a transductive way (MSGCN_tran) and initial 

parcellation (initial) on 44 retest subjects. Homogeneity of MSGCN_tran (0.136±0.003) is a 

little higher than that of MSGCN (0.135±0.003), while the initial parcellation is the largest 

(0.138±0.003). b) Reliability of individualized brain parcellations by using three different 

methods, including MSGCN (inter-Dice: 0.83±0.01, intra-Dice: 0.91±0.01), MSGCN_tran 

(inter-Dice: 0.73±0.02, intra-Dice: 0.84±0.03) and initial parcellation (inter-Dice: 0.77±0.02, 

intra-Dice: 0.83±0.02). Among them, MSGCN parcellation has the highest intra-subject 

similarity while initial parcellation has the lowest.  
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Supplement Fig.S3 Functional homogeneity of individualized brain parcellations 

gradually reduced when using high-order graph convolutions.  

The resting-state functional homogeneity of individualized parcellations, as evaluated in the 

validation dataset, was gradually decreased by increasing the order of ChebNet graph 

convolution from 3 to 6, suggesting an over smoothing effect when using high-order graph 

convolutional kernels.   
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Supplement Fig.S4 Distribution of topographic variability for individualized brain 

parcellations using MSGCN and MS-HBM approaches.  

The MSGCN captured more variations in individual parcellation maps as compared with MS-

HBM (1.43±0.29 vs 0.86±0.47, paired t-test p-value<0.05).  
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Supplement Fig.S5 Pipeline of MSGCN for individualized cortical parcellations.  

The model takes the functional connectivity profiles and individual brain graph as inputs. 

A series of 3rd-order graph convolutions are applied to the connectivity profiles, taking into 

account the variations in brain topography and functional connectivity. The model includes 

64 convolutional kernels in the 1st graph convolutional layer and 201 kernels in the 2nd 

layer. The learned graph representations of the last layer are transformed to a 201-

dimensional probability vector using the SoftMax function, which is then used to infer the 

areal probability for each vertex. 
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Supplement Fig.S6 MSGCN generated more reliable and functionally homogenous brain 

parcels than GAT. 

a) The reliability of individualized brain parcellation was measured by inter- and intra-subject 

dice coefficients, which demonstrated more reliable parcellation schemes in the MSGCN than 

GAT at both between-subject (0.810±0.021 vs 0.685±0.030, paired t-test p-value<0.01) and 

within-subject levels (0.889±0.025 vs 0.773±0.030, paired t-test p-value<0.01). We used a two-

layer GAT architecture, with 2 attention heads in the first layer and 64 convolutional kernels 

for each, followed by an ELU nonlinearity. A single attention head was used in the second layer 

with 201 convolutional kernels, followed by a softmax function to compute the areal probability 

of each vertex. The GAT model was trained on 50 subjects and evaluated on 928 subjects, using 

the same data as the current study. b) The functional homogeneity of individualized brain 

parcellation demonstrated more homogenous brain parcels by using MSGCN than GAT 

(0.137±0.001 vs 0.134±0.001, paired t-test p= 0.048). Note: * indicates p-value<0.05; ** 

indicates p-value<0.01. 
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Supplement Table S1. MSGCN parcellation showed reduced regional variability of seven 

HCP tasks and improved functional homogeneity at rest.  

Compared to the group-registered Schaefer400 atlas, the MSGCN parcellation showed smaller 

variability in task activation of seven tasks, namely language (math-story), emotion (faces-

shapes), gambling (reward), relational (rel-match), social (tom-random), motor (rh-avg) and 

working memory (2BK-tool) tasks. The MSGCN parcellation also showed higher functional 

homogeneity at rest. These results were still significant after corrected for multiple comparisons 

using FDR p<0.05.  

 Task variability Resting-state 
homogeneity Language Emotion Social Gambling Motor Relational WM 

p-value 1.8e-5 4.6e-4 4.9e-3 3.1e-4 9.6e-3 1.0e-2 7.7e-4 6.0e-4 

FDR corrected 
p-value 

1.4e-4 1.2e-3 6.5e-3 1.2e-3 1.1e-2 1.0e-2 1.2e-3 1.2e-3 
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Supplement Table S2. MSGCN parcellation significantly predicted 25 behavioral 

measures with p-value<0.05.  

A full list of the 25 behavioral measures and their corresponding cognitive or task domains are 

shown in the table below. 

Cognitive domain Behavioral measures 

Motor Strength_Unadj, Endurance_Unadj, GaitSpeed_Comp, 

Dexterity_Unad 

Cognition PicVocab_Unadj, PMAT24_A_CR, DDisc_AUC_40K, 

VSPLOT_TC, ListSort_Unadj 

Language ReadEng_Unadj 

Alertness PSQI_Score 

Emotion ER40_CR, ER40HAP, ER40SAD, AngAggr_Unadj, 

MeanPurp_Unadj 

Personality NEOFAC_A, NEOFAC_O, NEOFAC_C 

Sensory Taste_Unadj 

In-scanner task 

performance 

Emotion_Task_Face_Acc, 

Language_Task_Story_Avg_Difficulty_Level, 

Language_Task_Math_Avg_Difficulty_Level 

Relational_Task_Acc 

WM_Task_Acc 
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