

Supplementary Figure S1. The growth curves of different strains. A) The growth curves of E. coli BW25113, BW $\Delta$ recA. B) The growth curves of *E. coli* MG $\Delta$ hsdR and MG $\Delta$ hsdR-recA. C) The effects of RecA complementation to the growth of BW $\Delta$ recA. D) The effects of RecA complementation to the growth of XL1-Blue MRF'. Data are averages of three samples with standard deviations (error bars).

| Strains and<br>Plasmids | Functions and features                                                                                                                                                                                                                                                                         | Origin                                |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| E. coli strains         |                                                                                                                                                                                                                                                                                                |                                       |
| XL1-Blue MRF'           | ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173<br>endA1 supE44 thi-1 recA1 gyrA96 relA1<br>lac [F' proAB lacIªZ⊿M15 Tn10 (Tet <sup>r</sup> )]                                                                                                                                                               | Agilent                               |
| MG1655                  | K-12 F <sup>-</sup> $\lambda^-$ ilvG <sup>-</sup> rfb-50 rph-1                                                                                                                                                                                                                                 | NBRP<br>E.coli, Japan<br>Coli Genetic |
| W3110                   | $F^{-}\lambda^{-}$ rph-1 INV(rrnD, rrnE)                                                                                                                                                                                                                                                       | Stock Center<br>(CGSC)                |
|                         | $LacI^{+} rrnB_{T14} \Delta lacZ_{WJ16} hsdR514$                                                                                                                                                                                                                                               |                                       |
| BW25113                 | ΔaraBAD <sub>AH33</sub> ΔrhaBAD <sub>LD78</sub> rph-1 Δ(araB–<br>D)567 Δ(rhaD–B)568 ΔlacZ4787(::rrnB-3)<br>hsdP514 rph 1                                                                                                                                                                       | CGSC                                  |
| Mach1                   | Str.W $\Delta recA1398 endA1$ fhuA<br>$\Phi 80\Delta(lac)M15 \Delta(lac)X74 hsdR(r_Km_K^+)$                                                                                                                                                                                                    | Invitrogen                            |
| Omnimax2                | F <sup>(</sup> [proAB <sup>+</sup> lacI <sup>q</sup> lacZ $\Delta$ M15 Tn10(Tet <sup>K</sup> )<br>$\Delta$ (ccdAB)] mcrA $\Delta$ (mrr-hsdRMS-<br>mcrBC) $\varphi$ 80(lacZ) $\Delta$ M15 $\Delta$ (lacZYA-<br>argF)U169 endA1 recA1 glnV44 thi-<br>1 gyrA96(Nal <sup>R</sup> ) relA1 tonA panD | Invitrogen                            |
| Stbl2                   | F- endA1 glnV44 thi-1 recA1 gyrA96 relA1<br>$\Delta$ (lac-proAB) mcrA $\Delta$ (mcrBC-hsdRMS-mrr)<br>$\lambda^{-}$<br>F <sup>-</sup> mcrB mrr hsdS20 (rp <sup>-</sup> mp <sup>-</sup> ) recA13                                                                                                 | Invitrogen                            |
| Stb13                   | supE44 ara-14 galK2 lacY1 proA2 rpsL20<br>(Str <sup>R</sup> ) xvl-5 $\lambda^{-}$ leu mtl-1                                                                                                                                                                                                    | Invitrogen                            |
| Mutant of<br>MG1655     |                                                                                                                                                                                                                                                                                                |                                       |
| ΔhsdR                   | The <i>recA</i> gene deletion mutant of <i>E. coli</i> MG1655                                                                                                                                                                                                                                  | This study                            |
| ∆hsdR-recA              | The genes <i>hsdR</i> and <i>recA</i> were deleted in <i>E</i> . <i>coli</i> MG1655                                                                                                                                                                                                            |                                       |
| Mutant of W3110         |                                                                                                                                                                                                                                                                                                |                                       |
| ΔhsdR                   | The <i>recA</i> gene deletion mutant of <i>E. coli</i> W3110                                                                                                                                                                                                                                   | This study                            |
| ∆hsdR-recA              | The genes <i>hsdR</i> and <i>recA</i> were deleted in <i>E</i> . <i>coli</i> W3110                                                                                                                                                                                                             | This study                            |
| Mutants of<br>BW25113   |                                                                                                                                                                                                                                                                                                |                                       |

## 7 Supplementary Table S1. The strains and plasmids used in this study

| BW∆recA                         | The <i>recA</i> gene deletion mutant of <i>E. coli</i> BW25113                                                                     |              |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|
| BW3KG                           | $\Delta$ endA, $\Delta$ fhuA, $\Delta$ galE                                                                                        | This study   |
| BW3KD                           | $\Delta$ endA, $\Delta$ fhuA, $\Delta$ deoR                                                                                        | This study   |
| BW4K                            | $\Delta$ endA, $\Delta$ fhuA, $\Delta$ galE, $\Delta$ deoR                                                                         | This study   |
| Strains with                    |                                                                                                                                    | -            |
| Plasmids                        |                                                                                                                                    |              |
| BW25113/vector                  | BW25113 harboring pCL1920                                                                                                          | This study   |
| BW∆recA/vector                  | BW∆recA harboring pCL1920                                                                                                          | This study   |
| BW∆recA/recA                    | BW∆recA harboring pCL1920-Pnat-recA                                                                                                | This study   |
| XL1-Blue                        | VI 1 Dive MDE' berbering aCI 1020                                                                                                  | This study.  |
| MRF'/vecor                      | XLI-Blue MRF harboring pCL1920                                                                                                     | This study   |
| XL1-Blue                        | XL1-Blue MRF' harboring pCL1920-Pnat-                                                                                              | This starder |
| MRF'/recA                       | recA                                                                                                                               | This study   |
| Plasmids                        |                                                                                                                                    |              |
| "Dluggerint CV-                 | Abbreved as pSK-, pUC18 ori, Amp <sup>R</sup> , used                                                                               | Stratagona   |
| pbluescript SK                  | to test TE of competent cells                                                                                                      | Stratagene   |
| pCL1920                         | pSC101 ori, Spc <sup>R</sup>                                                                                                       | Addgene      |
| pBBR1MCS5                       | Abbreved as pMCS5, pBBR ori, Gm <sup>R</sup>                                                                                       | Addgene      |
| pBR322                          | pBR322 ori, Amp <sup>R</sup> and Tet <sup>R</sup>                                                                                  | Addgene      |
| pACYC184                        | p15A ori, Cmr <sup>R</sup> and Tet <sup>R</sup>                                                                                    | Addgene      |
| pKD4                            | R6K ori, Kan <sup>R</sup> and Amp <sup>R</sup> , used for gene deletion in <i>E. coli</i>                                          | Addgene      |
| pTKred                          | pSC101 ori, temperature sensitive, Spc <sup>R</sup> , used for gene deletion in <i>E. coli</i>                                     | Addgene      |
| pCP20                           | pSC101 ori, temperature sensitive, $Amp^{R}$ , used for gene deletion in <i>E. coli</i>                                            | Addgene      |
| pSK::Pkat-eGFP                  | derived from pSK-, phbCAB genes under<br>the control of 5 tac promoters                                                            | This study   |
| pCL1920::Pnat-                  | The <i>recA</i> gene of <i>E. coli</i> was cloned in<br>pCL 1920 with its native promoter (Pnat)                                   | This study   |
| pCL1920::NKan-<br>Gm-CKan-300   | Plasmid pCL1920 was introduced with 300<br>bp direct repeat, used to test intramolecular<br>recombination occurring on plasmid DNA | This study   |
| pBR322::NKan-<br>Gm-CKan-300    | Plasmid pBR322 was introduced with 300<br>bp direct repeat, used to test intramolecular<br>recombination occurring on plasmid DNA  | This study   |
| pBBR1MCS5::NK<br>an-Gm-CKan-300 | Plasmid pMCS5 was introduced with 300 bp<br>direct repeat, used for test intramolecular<br>recombination occurring on plasmid DNA  | This study   |
| pSK::NKan-Gm-<br>CKan-300       | Plasmid pSK- was introduced with 300 bp<br>direct repeat, used for test intramolecular<br>recombination occurring on plasmid DNA   | This study   |

| pCL1920::HR3000       | Plasmid pCL1920 cloned with 3000 bp<br>sequence with homology to BW25113<br>genome, used to test the recombination<br>occurring between plasmid and its                            | This study |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| pBR322::HR3000        | chromosome<br>Plasmid pBR322 cloned with 3000 bp<br>sequence with homology to BW25113<br>genome, used to test the recombination<br>occurring between plasmid and its<br>chromosome | This study |
| pMCS5::HR3000         | Plasmid pMCS5 cloned with 3000 bp<br>sequence with homology to BW25113<br>genome, used to test the recombination<br>occurring between plasmid and its<br>chromosome                | This study |
| pSK::HR3000           | Plasmid pMCS5 cloned with 3000 bp<br>sequence with homology to BW25113<br>genome, used to test the recombination<br>occurring between plasmid and its<br>chromosome                | This study |
| pCL1920::2TR-300      | Plasmid pCL1920::Pkat-eGFP was<br>introduced two 300 bp tandem repeats, used<br>for test intramolecular recombination<br>occurring on plasmid DNA                                  | This study |
| pCL1920::3TR-300      | Plasmid pCL1920::Pkat-eGFP was<br>introduced three 300 bp tandem repeats,<br>used for test intramolecular recombination<br>occurring on plasmid DNA                                | This study |
| pCL1920::2TR-<br>1000 | Plasmid pCL1920::Pkat-eGFP was<br>introduced two 300 bp tandem repeats, used<br>for test intramolecular recombination<br>occurring on plasmid DNA                                  | This study |
| pCL1920::3TR-<br>1000 | Plasmid pCL1920::Pkat-eGFP was<br>introduced three 300 bp tandem repeats,<br>used for test intramolecular recombination<br>occurring on plasmid DNA                                | This study |

| NO.            | Primers      | SEQUENCES                                                                                                      | Purposes and characteristics                                                                |
|----------------|--------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1              |              | GAACATATTGACTA<br>TCCGGTATTACCCG<br>GCATGACAGGAGT                                                              |                                                                                             |
| I. recA-del-fr | recA-del-Ir  | AAAAATGGCTCAGC<br>ATTACACGTCTTGA<br>GCGAT                                                                      | Primers used to amplify DNA fragments from pKD4, and                                        |
| 2.             | recA-del-rev | CAGATGCGACCCTT<br>GTGTATCAAACAAG<br>ACGATTAAAAAATCT<br>TCGTTAGTGGAACA<br>CTTAACGGCTGACA<br>TG                  | used to knock out the <i>recA</i> gene                                                      |
| 3.             | recA-out-fr  | TACCGATATTGCCG<br>GTAGCT                                                                                       | Primers used to check if recA                                                               |
| 4.             | recA-out-rev | GTCGATGTCACATT                                                                                                 | gene was successfully deleted                                                               |
| 5.             | endA-del-fr  | CAGCTTTCGCTACG<br>TTGCTGGCTCGTTT<br>TAACACGGAGTAA<br>GTGATGTACCAGCA<br>TTACACGTCTTGAG<br>CGAT<br>GGGGTTAACAAAA | Primers used to amplify DNA fragments from pKD4, and used to knock out the <i>endA</i>      |
| 6.             | endA-del-rev | AGAATCCCGCTAGT<br>GTAGGTTAGCTCTT<br>TCGCGCCTGGGAAC<br>ACTTAACGGCTGAC<br>ATG                                    | gene                                                                                        |
| 7.             | endA-fr-out  | GTGGTACCGCACGA<br>ACTGGCA                                                                                      | Primers used to check if <i>endA</i>                                                        |
| 8.             | endA-rev-out | GCGACATCACCTGA<br>CCGAGG                                                                                       | gene was successfully deleted                                                               |
| 9.             | fhuA-del-fr  | ATTCTCGTTTACGT<br>TATCATTCACTTTA<br>CATCAGAGATATAC<br>CAATGGCGCAGCAT<br>TACACGTCTTGAGC<br>GAT                  | Primers used to amplify DNA fragments from pKD4, and used to knock out the <i>fhuA</i> gene |
| 10.            | fhuA-del-rev | TGGGCACGGAAATC<br>CGTGCCCCAAAAGA                                                                               | gene                                                                                        |

Supplementary Table S2. The oligoes used in this study

|     |                 | GAAATTAGAAACG                             |                                                          |
|-----|-----------------|-------------------------------------------|----------------------------------------------------------|
|     |                 | GAAGGTTGCGGAA                             |                                                          |
|     |                 | CACTTAACGGCTGA                            |                                                          |
|     |                 | CATG                                      |                                                          |
| 11  | flow A cout for | TGTGCCAGCAGAGC                            |                                                          |
| 11. | InuA-out-Ir     | GAGATG                                    | Primers used to check if <i>fhuA</i>                     |
| 10  | <b>G A</b>      | ACCAGTTCACGCAC                            | gene was successfully deleted                            |
| 12. | InuA-out-rev    | GGTCA                                     |                                                          |
|     |                 | TTATGCTATGGTTA                            |                                                          |
|     |                 | TTTCATACCATAAG                            |                                                          |
| 10  |                 | CCTAATGGAGCGAA                            |                                                          |
| 13. | galE-del-fr     | TTATGAGACAGCAT                            |                                                          |
|     |                 | TACACGTCTTGAGC                            | Primers used to amplify DNA                              |
|     |                 | GAT                                       | fragments from pKD4, and                                 |
|     |                 | TCAACGGGATTAAA                            | used to knock out the galE                               |
|     |                 | TTGCGTCATGGTCG                            | gene                                                     |
| 1.4 |                 | TTCCTTAATCGGGA                            |                                                          |
| 14. | galE-del-rev    | TATCCCTGGGAACA                            |                                                          |
|     |                 | CTTAACGGCTGACA                            |                                                          |
|     |                 | TG                                        |                                                          |
| 1 - |                 | GATTAGCGAAGGTG                            |                                                          |
| 15. | galE-out-fr     | AAACG                                     |                                                          |
|     |                 |                                           | Primers used to check if <i>galE</i>                     |
| 1.0 | 15              | GATTTCCGTCAATG                            | gene was successfully deleted                            |
| 16. | galE-out-rev    | CTGCA                                     |                                                          |
|     |                 |                                           |                                                          |
|     |                 | AGTGTAGTATTGAG                            |                                                          |
|     |                 | CGGCTCGCTTCAAT                            |                                                          |
| 17  |                 | AACTATTCAGAGGG                            |                                                          |
| 17. | deoR del-Fr     | ATTATGGAACAGCA                            |                                                          |
|     |                 | TTACACGTCTTGAG                            | Primers used to amplify DNA                              |
|     |                 | CGAT                                      | fragments from pKD4, and                                 |
|     |                 | GATGGCGCGAAAC                             | used to knock out the <i>deoR</i>                        |
|     |                 | GTCATCCGGTTATA                            | gene                                                     |
| 10  | 1               | CGTCATTAATACAT                            | -                                                        |
| 18. | deoR del-rev    | CAACTTAATGGAAC                            |                                                          |
|     |                 | ACTTAACGGCTGAC                            |                                                          |
|     |                 | ATG                                       |                                                          |
| 10  | l. D. ( C       | GCGATCACGGTACG                            |                                                          |
| 19. | deok -out-fr    | GTGAT                                     | Primers used to check if <i>deoR</i>                     |
|     |                 |                                           |                                                          |
| 20  |                 | CTCAGTGACCATAC                            | gene was successfully deleted                            |
| 20. | deoR -out-rev   | CTCAGTGACCATAC<br>CGCGT                   | gene was successfully deleted                            |
| 20. | deoR -out-rev   | CTCAGTGACCATAC<br>CGCGT<br>GATCCTCTAGAGTC | gene was successfully deleted<br>Primers used to amplify |

| 22. | pcl1920-rev-<br>Pnp | GATCGCGTATGCCG<br>CCATG                                            | pCL1920 as template, which<br>was used to construct<br>pCL1920::Pnp-recA                                                |
|-----|---------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 23. | pnp-fr-recA         | CATGGCGGCATACG<br>CGATCACGCGGATT<br>TGTCACCTACAG<br>CAGGTCGACTCTAG | Primers used amplify F-recA<br>with its native promoter and<br>use BW25113 genome as                                    |
| 24. | pnp-rev-recA        | AGGATCTTAAAAAT<br>CTTCGTTAGTTTCT<br>GCTACGCC                       | template, which was used to<br>construct pCL1920::Pnp-recA                                                              |
| 25. | psk-kan-F           | GCGGGACTCTGGGG<br>TTCGAAATG                                        | Primers used amplify<br>linearized vector with pSK-                                                                     |
| 26. | psk-kan-R           | GCGAAACGATCCTC<br>ATCCTGTCTCT                                      | Kan (Xia et al., 2019) as<br>template, which was used for<br>pSK::Pkat-eGFP cloning                                     |
| 27. | Pkat-eGFP-F30       | GGCGGCCGCTCTAG<br>AACTAGTGGATCCC<br>CCACTGGGCTATCT<br>GGACAAGGG    | Primers used amplify Pkat-<br>eGFP fragment with SmaI<br>treated pSK::Pkat-eGFP (Xia<br>et al. 2019) as template, which |
| 28. | Pkat-eGFP-<br>R30   | GATAAGCTTGATAT<br>CGAATTCCTGCAGC<br>CCGCATTCTGCCGA<br>CATGGAA      | was used for pSK::Pkat-eGFP<br>cloning with 30 bp<br>homologous ends                                                    |
| 29. | pMCS5-fr-spc        | CGGCAAATAACAAT<br>TCGTTCAAGCCGAG<br>ATC                            | Primers used amplify<br>linearized vector with                                                                          |
| 30. | pMCS5-rev-<br>spc   | CTTCCCTCATCGTT<br>GCTGCTCCATAACA<br>TCA<br>AGCAGCAACGATG           | pBBR1MCS5 as template,<br>which was used to construct<br>pBBR1MCS5::Spc                                                 |
| 31. | spc-fr-pMCS5        | AGGGAAGCGGTGA<br>TCGC                                              | Primers used amplify F-spc fragment with pCL1920 as                                                                     |
| 32. | spc-rev-<br>pMCS5   | GAACGAATTGTTAT<br>TTGCCGACTACCTT<br>GGTGATCT                       | template, which was used to construct pBBR1MCS5::Spc                                                                    |
| 33. | NKan-fr             | GGGAAAACGCAAG<br>CGCAAAGAGAAAG<br>GCTTCCATGTCGCC                   | Primers used amplify F-NKan<br>fragment with pKD4 as                                                                    |
| 34. | NKan-rev            | AGAATGCTACGTGC<br>TCGCTCGATGCGA                                    | construst NKan-Gm-CKan-<br>300bp fragment                                                                               |
| 35. | Gm-fr               | AGCATTCTGCCGAC<br>ATGGAAGC                                         | Primers used amplify F-Gm fragment with pBBR1MCS5 as                                                                    |
| 36. | Gm-rev              | GACAAAAAAGAACC                                                     | template, which was used to                                                                                             |

|                 |                     | GGCGTTGTGACAAT  | construst NKan-Gm-CKan-        |
|-----------------|---------------------|-----------------|--------------------------------|
|                 |                     | TTACCG          | 300bp fragment                 |
| 37              | CKan fr             | GTTCTTTTTGTCAA  | Primers used amplify F-CKan    |
| 57.             | CKall-II            | GACCGACCTGTCC   | fragment with pKD4 as          |
|                 |                     |                 | template, which was used to    |
| 38.             | CKan-rev            |                 | construst NKan-Gm-CKan-        |
|                 |                     | GGIGGAA         | 300bp fragment                 |
| 20              | 11000               | TTAAGCCAGCCCCG  | Primers used amplify           |
| 39.             | pc11920-fr          | ACACC           | linearized vector with         |
|                 |                     |                 | pCL1920 as template, which     |
| 10              |                     | CTGTCGTGCCAGCT  | was used to construct          |
| 40.             | pcl1920-rev         | GCAT            | pCL1920::NKan-Gm-CKan-         |
|                 |                     |                 | 300 and pCL1920::HR3000        |
|                 |                     | TAATGCAGCTGGCA  | Primers used amplify NKan-     |
|                 | NKan-Gm-            | CGACAGGGGAAAA   | Gm-CKan-300bp fragment         |
| 41.             | CKan-300-fr-        | CGCAAGCGCAAAG   | with F-NKan, F-Gm and F-       |
|                 | pCL1920             | AGAAAGC         | CKan as template, which was    |
|                 | NKan-Gm-            | GGGTGTCGGGGCTG  | used to construct              |
| 42              | CKan-300-rev-       | GCTTAACATAGAAG  | pCL1920NKan-Gm-CKan-           |
| . 2.            | pCL1920             | GCGGCGGTGGAATC  | 300                            |
|                 | pellij20            | TAATGCAGCTGGCA  | 200                            |
|                 | HR3000-fr-          | CGACAGATGCCTTT  | Primers used amplify HR3000    |
| 43.             | ncl1920             | ТАСАСТТССТСААС  | fragment with BW25113          |
|                 | peni)20             | GC              | genome as template which       |
|                 |                     | GGGTGTCGGGGCTG  | was used to construct          |
| 44              | HR3000-rev-         | GCTTAACTCGGCTT  | nCI 1920. HR 3000              |
|                 | pcl1920             | GTTGACCACCAT    | peer/20iik3000                 |
|                 |                     | GGCACCTCGCTAAC  | Primers used amplify           |
| 45.             | pBR322-fr           | GGATTCA         | linearized vector with pBR322  |
|                 |                     | OUATICA         | as template, which was used to |
|                 |                     | GTGATACCCCTATT  | construct pBR322::NKan-Gm-     |
| 46.             | pBR322-rev          | ТТТАТАССТТА     | CKan 300 and                   |
|                 |                     |                 | nBR322HR3000                   |
|                 |                     | ТАТААААТАСССС   | p <b>BR</b> 322 <b>IR</b> 3000 |
|                 | NKan-Gm-            | TATCACGGGAAAAC  | Primers used amplify NKan-     |
| 47.             | CKan-300-fr-        | GCAAGCGCAAAGA   | Gm-CKan-300bp fragment         |
|                 | pBR322              | GAAAGC          | with F-NKan, F-Gm and F-       |
|                 | NKan Gm             | GAAAOC          | CKan as template, which was    |
| 18              | $CK_{an}=300 ray$   | GGTGCCCATAGAAG  | used to construst              |
| <del>4</del> 0. | nRR277              | GCGCCCCATAGAAG  | pBR322::NKan-Gm-CKan-300       |
|                 | PDR322<br>HR3000 fr | GTGACCGCCCCCCTT |                                |
| 49.             | nRR277              |                 | Primers used amplify HR3000    |
|                 | HR3000 rov          |                 | fragment with BW25113          |
| 50.             | nBR300              |                 | genome as template, which      |
|                 | PD1322              |                 |                                |

|     |                                    | GGGCTGCAGGAATT                                              | was used to construst<br>pBR322::HR3000<br>Primers used amplify                                           |
|-----|------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 51. | pSK-fr                             | CGATATCAAG                                                  | linearized vector with                                                                                    |
| 52. | pSK-rev                            | GGGGGGATCCACTAG<br>TTCTAGAGC                                | pBluescript SK <sup>-</sup> as template,<br>which was used to construct<br>pSK::NKan-Gm-CKan-300          |
| 53. | NKan-Gm-<br>CKan-300-fr-<br>pSK    | CTAGAACTAGTGGA<br>TCCCCCGGGAAAAC<br>GCAAGCGCAAAGA<br>GAAAGC | Primers used amplify NKan-<br>Gm-CKan-300bp fragment<br>with F-NKan, F-Gm and F-                          |
| 54. | NKan-Gm-<br>CKan-300-rev-<br>pSK   | ATATCGAATTCCTG<br>CAGCCCCATAGAAG<br>GCGGCGGTGGAATC          | CKan as template, which was<br>used to construst pSK::NKan-<br>Gm-CKan-300                                |
| 55. | pSK-fr-<br>HR3000                  | GGGCTGCAGGAATT<br>CGATATCAAG                                | Primers used amplify<br>linearized vector with                                                            |
| 56. | pSK-rev-<br>HR3000                 | CTGGCCGTCGTTTT<br>ACAACG                                    | which was used to construct<br>pSK::HR3000                                                                |
| 57. | HR3000-fr-<br>pSK                  | CGTTGTAAAACGAC<br>GGCCAGATGCCTTT<br>TACACTTGGTCAAC<br>GC    | Primers used amplify HR3000<br>fragment with BW25113<br>genome as template, which                         |
| 58. | HR3000-rev-<br>pSK                 | ATATCGAATTCCTG<br>CAGCCCCTCGGCTT<br>GTTGACCACCAT            | was used to construst<br>pSK::HR3000                                                                      |
| 59. | pMCS5::Spc-fr                      | GCGTTAATATTTTG<br>TTAAAATTCGCG                              | Primers used amplify<br>linearized vector with<br>pBBR1MCS5::Spc as                                       |
| 60. | pMCS5::Spc-<br>rev                 | TAAGCATTCTGCCG<br>ACATGGA                                   | template, which was used to<br>construct pBBR1MCS5-<br>Spc::NKan-Gm-CKan-300 and<br>pBBR1MCS5-Spc::HR3000 |
| 61. | NKan-Gm-<br>CKan-300-fr-<br>pMCS5  | CTGGTGCTGGGATT<br>ATGATG                                    | Primers used amplify NKan-<br>Gm-CKan-300bp fragment<br>with F-NKan, F-Gm and F-                          |
| 62. | NKan-Gm-<br>CKan-300-rev-<br>pMCS5 | GATATTGTTCAGCG<br>CGGC                                      | used to construst<br>pBBR1MCS5-Spc::NKan-Gm-<br>CKan-300                                                  |
| 63. | HR3000-fr-<br>pMCS5                | TACCGATGCGATGG<br>CCTAC                                     | Primers used amplify HR3000 fragment with BW25113                                                         |

| 64. | HR3000-rev-<br>pMCS5 | TCAAGTTCCTCTGC<br>TGTAAGT                                 | genome as template, which<br>was used to construst<br>pBBR1MCS5-Spc::HR3000               |
|-----|----------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 65. | pCL-fr-Ntac          | TATGGTGCACTCTC<br>AGTACAATCT                              | Primers used amplify<br>linearized vector with<br>pCL 1920 as template, which             |
| 66. | pCL-rev-Ntac         | TCCAGCAAAGGTCT<br>AGCAGAA                                 | was used for pCL1920::Ntac-<br>eGFP cloning with 20bp                                     |
| 67. | Ntac-fr-pCL          | TCTGCTAGACCTTT<br>GCTGGA                                  | Primers used amplify Ntac<br>fragment with pNTG as                                        |
| 68. | Ntac-fr-pCL          | TGTACTGAGAGTGC<br>ACCATATGC                               | pCL1920::Ntac-eGFP cloning<br>with 20bp homologous ends                                   |
| 69. | pCL-fr-2TR           | GAATCGTTTTCCGG<br>GACGC                                   | Primers used amplify<br>linearized vector with<br>pCL1920::pkat-eGFP as                   |
| 70. | pCL-rev-2TR          | CGAAGCCCAACCTT<br>TCATAGAAG                               | template, which was used to<br>construct pCL1920::2TR-<br>300bp, pCL1920::2TR-1000bp      |
| 71. | 2TR-300-fr-<br>pCL   | GGGAACTATAAGA<br>CACGTGCTACATCA<br>TGGCAGACAAACA<br>AAAG  | Primers used amplify TR300<br>fragment with pCL1920::pkat-<br>eGFP as template, which was |
| 72. | 2TR-300-rev-<br>pCL  | TCTATTAACAAGTG<br>TATCACTTGGTCGG<br>TCATTTCGAACCCC<br>AGA | used to construct<br>pCL1920::2TR-300bp                                                   |
| 73. | pCL-fr-3TR-<br>300   | GTGATACACTTGTT<br>AATAGAATCGAG                            | Primers used amplify<br>linearized vector with<br>pCL1920::2TR-300bp as                   |
| 74. | pCL-rev-3TR-<br>300  | GCACGTGTCTTATA<br>GTTCCCGT                                | template, which was used to<br>construct pCL1920::3TR-<br>300bp                           |
| 75. | 3TR-300-fr-<br>pCL   | GGGAACTATAAGA<br>CACGTGCTACATCA<br>TGGCAGACAAACA<br>AAAG  | Primers used amplify TR300<br>fragment with pCL1920::pkat-<br>eGFP as template, which was |
| 76. | 3TR-300-rev-<br>pCL  | TCTATTAACAAGTG<br>TATCACTTGGTCGG<br>TCATTTCGAACCCC<br>AGA | used to construct<br>pCL1920::3TR-300bp                                                   |

|     | <b>OTTO</b> 1000 C | CCGTGACAGGTCAT |                               |
|-----|--------------------|----------------|-------------------------------|
| 77. | 2TR-1000-fr-       | TCAGACGGGACTGG | Primers used amplify TR1000   |
|     | pCL                | GCTATCTGGACAAG | fragment with pCL1920::pkat-  |
|     |                    | CTTACTGGGTGCAT | eGFP as template, which was   |
|     | 2TR-1000-rev-      | TAGCCATTGGTCGG | used to construct             |
| 78. | pCL                | TCATTTCGAACCCC | pCL1920::2TR-1000bp           |
|     | 1                  | AGA            | 1 1                           |
|     | pCL-fr-3TR-        | TGGCTAATGCACCC | Primers used amplify          |
| 79. | 1000               | AGTAAGGC       | linearized vector with        |
|     |                    |                | pCL1920::2TR-1000bp as        |
| ~~  | pCL-rev-3TR-       | GTCTGAATGACCTG | template, which was used to   |
| 80. | 1000               | TCACGGGATA     | construct pCL1920::3TR-       |
|     |                    |                | 1000bp                        |
|     |                    | CCGTGACAGGTCAT | 1                             |
| 81. | 3TR-1000-fr-       | TCAGACGGGACTGG | Primers used amplify TR1000   |
|     | pCL                | GCTATCTGGACAAG | fragment with pCL1920::pkat-  |
|     |                    | CTTACTGGGTGCAT | eGFP as template, which was   |
| 00  | 3TR-1000-rev-      | TAGCCATTGGTCGG | used to construct             |
| 82. | pCL                | TCATTTCGAACCCC | pCL1920::3TR-1000bp           |
|     |                    | AGA            |                               |
| 02  | nCL fr NTD         | GTCTGCTATGTGGT | Primers used amplify          |
| 03. | pCL-II-NIR         | GCTATCTG       | linearized vector with        |
|     |                    |                | pCL1920 as template, which    |
|     |                    | GCCTCTTCGCTATT | was used for pCL1920::NTR-    |
| 84. | pCL-rev-NTR        |                | 300bp and pCL1920::NTR-       |
|     |                    | ACUCCA         | 1000bp cloning with 20bp      |
|     |                    |                | homologous ends               |
| 85  | NTR_fr_nCI         | TGGCGTAATAGCGA | Primers used amplify NTR      |
| 05. | NTR-II-pCL         | AGAGGC         | fragment with pCL1920::NTR-   |
|     |                    |                | 300bp and pCL1920::NTR-       |
|     |                    |                | 1000bp as template, which was |
| 86  | NTR-rev-nCI        | CAGATAGCACCACA | used for pCL1920::NTR-300bp   |
| 00. | MIK-IEV-PCL        | TAGCAGAC       | and pCL1920::NTR-1000bp       |
|     |                    |                | cloning with 20bp homologous  |
|     |                    |                | ends                          |

Supplementary Table S3. Positive rates of homologous inserts into four plasmids

|                                                                                          |                                 | <b>Positive rates</b> |                       |                         |  |
|------------------------------------------------------------------------------------------|---------------------------------|-----------------------|-----------------------|-------------------------|--|
|                                                                                          | Plasmids                        | BW25113<br>(%)        | <b>BWΔrecA</b><br>(%) | XL1-Blue<br>MRF'<br>(%) |  |
| Vector                                                                                   | pSK::NKan-Gm-<br>CKan-300bp     | $97\pm1$              | $94\pm0$              | $97\pm1$                |  |
| Vector ::<br>NKan-Gm-<br>CKan-<br>300bp (Fig.<br>2A)<br>Vector ::<br>HR3000<br>(Fig. 2B) | pCL1920::NKan-Gm-<br>CKan-300bp | $97\pm0$              | $97\pm0$              | $94\pm2$                |  |
|                                                                                          | pBR322::NKan-Gm-<br>CKan-300bp  | $97\pm0$              | $92 \pm 1$            | $93 \pm 1$              |  |
|                                                                                          | pMCS5::NKan-Gm-<br>CKan-300bp   | $97\pm0$              | $91 \pm 1$            | $92 \pm 1$              |  |
|                                                                                          | pSK::HR3000                     | $95\pm1$              | $95 \pm 1$            | $95\pm0$                |  |
|                                                                                          | pCL1920::HR3000                 | $95\pm1$              | $100\pm0$             | $100\pm0$               |  |
|                                                                                          | pBR322::HR3000                  | $100\pm0$             | $95\pm1$              | $95 \pm 1$              |  |
|                                                                                          | pMCS5::HR3000                   | $90\pm0$              | $90 \pm 1$            | $100 \pm 0$             |  |

with BW25113, BW∆recA and XL1-Blue MRF'

<sup>a</sup> The data are averages of clone colonies from three tests (with standard deviations).

| Plasmids         | Strains | <b>Colonies</b><br>a | Concentration of<br>plasmids before<br>3 transfers<br>(ng/ul) <sup>b</sup> | Concentration of<br>plasmids after 3<br>transfers (ng/ul) <sup>b</sup> |
|------------------|---------|----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|
| pSK::NKan-       | BW25113 | R1                   | 514.7                                                                      | 520.67                                                                 |
| Gm-CKan-         | BW25113 | R2                   | 606.4                                                                      | 492.6                                                                  |
| 300bp            | BW∆recA | PC                   | 357.13                                                                     | 312.51                                                                 |
| pCL1920::NK      | BW25113 | R1                   | 26.5                                                                       | 14.85                                                                  |
| an-Gm-CKan-      | BW25113 | R2                   | 18.9                                                                       | 22.829                                                                 |
| 300bp            | BW∆recA | PC                   | 27.74                                                                      | 38.76                                                                  |
| pBR322::NKa      | BW25113 | R1                   | 69.937                                                                     | 67.43                                                                  |
| n-Gm-CKan-       | BW25113 | R2                   | 52.518                                                                     | 50.7                                                                   |
| 300bp            | BW∆recA | PC                   | 73.52                                                                      | 55.56                                                                  |
| pMCS5::NKa       | BW25113 | R1                   | 24.49                                                                      | 29                                                                     |
| n-Gm-CKan-       | BW25113 | R2                   | 43.05                                                                      | 43.015                                                                 |
| 300bp            | BW∆recA | PC                   | 29.06                                                                      | 31.05                                                                  |
|                  | BW25113 | <b>R</b> 1           | 236.7                                                                      | 44.8                                                                   |
| pSK::HR3000      | BW25113 | R2                   | 372.68                                                                     | 227.49                                                                 |
| -                | BW∆recA | PC                   | 500                                                                        | 416.67                                                                 |
| <b>CI</b> 1020.  | BW25113 | R1                   | 38.222                                                                     | 23.33                                                                  |
| HR3000           | BW25113 | R2                   | 32.523                                                                     | 47.552                                                                 |
|                  | BW∆recA | PC                   | 54.34                                                                      | 36.23                                                                  |
| "DD200           | BW25113 | R1                   | 51.029                                                                     | 51.76                                                                  |
| рвк322::         | BW25113 | R2                   | 31.909                                                                     | 28.8                                                                   |
| HK3000           | BW∆recA | PC                   | 102.04                                                                     | 89.90                                                                  |
| MODE             | BW25113 | R1                   | 32.562                                                                     | 31.24                                                                  |
| pMC55::          | BW25113 | R2                   | 44.176                                                                     | 31.86                                                                  |
| HK3000           | BW∆recA | PC                   | 36.76                                                                      | 40.01                                                                  |
| -CI 1020-        | BW25113 | R1                   | 30.864                                                                     | 22.13                                                                  |
| pCL1920::        | BW25113 | R2                   | 17.123                                                                     | 16.39                                                                  |
| stac-eGFP        | BW∆recA | PC                   | 13.298                                                                     | 17.67                                                                  |
| CI 1020          | BW25113 | R1                   | 34.72                                                                      | 84.75                                                                  |
| pCL1920::        | BW25113 | R2                   | 42.02                                                                      | 44.64                                                                  |
| 31 <b>R</b> -300 | BW∆recA | PC                   | 17.79                                                                      | 29.94                                                                  |
| CI 1020          | BW25113 | R1                   | 22.94                                                                      | 17.18                                                                  |
| pCL1920::        | BW25113 | R2                   | 25                                                                         | 15.52                                                                  |
| 3TR-1000         | BW∆recA | PC                   | 18,31                                                                      | 26.73                                                                  |

Supplementary Table S4. The plasmids extracted in the plasmid stability assay

<sup>a</sup> R1 and R2 means the plasmids were extracted from two clonies of BW25113, and PC means the plasmid was extracted from  $BW\Delta recA$  used as positive control.

 $^{\rm b}$  The plasmids were extracted from 3 mL of overnight cultures and dissolved in 45 ul of H<sub>2</sub>O.

## REFERENCES

Xia, Y.Z., Li, K., Li, J.J., Wang, T.Q., Gu, L.C., and Xun, L.Y. (2019).
T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. *Nucleic Acids Research* 47(3), e15. doi: 10.1093/nar/gky1169.