
Supplementary Material for “Neural Control and
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Aerial Vehicles”

1 OVERVIEW
This supplementary material contains detailed results and a comparison of our proposed neural control with
online learning and model predictive control (MPC) in the Gazebo robot simulation. Both compared control
techniques are implemented on a laptop with Intel core i7-9750H 2.6GHz CPU, 8GB RAM, and GeForce
GTX 1050 GPU. Therefore, any comparison provided here is based on this computational efficiency.
Additionally, the material provides detailed results of the vertical plane experiment to learn the predictive
weights for speed adaptation in both the real and simulated UAVs.

2 NEURAL CONTROL AND ONLINE LEARNING IN SIMULATION ENVIRONMENT
Here, we repeated the first experiment described in the main paper in the Gazebo physical simulation
environment. An IRIS UAV model in the Gazebo with ardupilot software in the loop (SITL) (Team,
2020) was used as an experimental platform (see Supplementary Fig. S1). We let the UAV online learn
the predictive weight of the neural control at different flying speeds using position feedback from the
simulation as an input of the neural control. In these experiments, we used a learning rate of 0.1 to allow the
system to learn the weight gradually. We flew the UAV at different maximum flying speeds of 0.5, 0.7, 0.9,
1.0, 1.1, 1.3, and 1.5 m/s. The learning results at speeds of 0.5, 1.0, and 1.5 m/s are shown in Supplementary
Figs. S2(a), (b), and (c). We also repeated the experiment seven times at each speed to observe the variance
of the system. An approximated relationship between predictive weights and maximum flying speeds was
calculated using polynomial regression based on the three learned weights (see Supplementary Figs. S2(d)).

x

y
z

Supplementary Fig. S1. An IRIS UAV model in the Gazebo simulation using ardupilot software in the
loop (SITL) as a flight controller.
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Supplementary Fig. S2. Real-time data of speed adaptation during online learning while flying the UAV
forward in the simulated environment at maximum speeds of (a) 0.5 m/s, (b) 1.0 m/s, and (c) 1.5 m/s. (d)
The approximated predictive weights based on the learned weights at maximum flying speeds of 0.5, 0.7,
0.9, 1.0, 1.1, 1.3, and 1.5 m/s. Note that p signal denotes a predictive signal, r signal denotes a reflexive
signal, dr/dt denotes derivative of the reflexive signal, p weight denotes a predictive weight, vel denotes an
actual velocity (x-axis) of the UAV, pos x denotes a position on the x-axis of the UAV compared to the
virtual reflexive line (blue line).

The usability of the approximated weights was verified by flying the UAV at two other different speeds
(0.75 and 1.25 m/s) using the initial predictive weights of the corresponding speeds, which are 0.92 and
1.01, respectively (see Supplementary Fig. S2(d)). The results show in Supplementary Fig. S3(a) and (b).

3 MODEL PREDICTIVE CONTROL(MPC)
In this section, we implemented the speed adaptation control using the model predictive control (MPC)
(Bareiss et al., 2017; Baca et al., 2018; Lindqvist et al., 2020; Wang et al., 2021), as the main controller of
the UAV in the simulated environment. The MPC is an optimization-based control algorithm that generates
the optimal control signals by predicting future states of the system in horizon time. It optimizes the control
input command to get the lowest cost based on a defined cost function. The implementation detail is
described in two subsections. First, system identification and modeling, where we defined parameters and
created a dynamics model of the UAV, is given. Second, an explicit MPC (Lee and Chang, 2018; Varshney
et al., 2019) for the real-time speed adaptation controller is presented.
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Supplementary Fig. S3. Real-time data when flying the UAV forward in the simulated environment at
maximum speeds of (a) 0.75 m/s and (b) 1.25 m/s, using approximated predictive weights of 0.96 and 1.14
(from Supplementary Fig. S2(d)), respectively. Note that p signal denotes the predictive signal, vel denotes
the actual velocity (x-axis) of the UAV, pos x denotes the position on the x-axis of the UAV compared to
the virtual reflexive line (blue line).

3.1 System Identification and Modeling
In horizontal plane experiments, the speed adaptation was simplified by considering only the flying

forward of the UAV. Thus, to implement the MPC, we simplified the dynamic model of the UAV by
considering the x-axis with respect to the UAV frame. We assumed that the velocity response of the UAV
in the x-axis was the second-order response. Therefore the approximated dynamic (state-space) model of
the UAV system was derived from the standard form of the second-order closed-loop transfer function as
below:

2nd order T.F. =
b2

S2 + 2aS + b2
, (S1)

where S is the complex frequency domain parameter in Laplace transform. b is the undamped natural
frequency of the system, a is the undamped natural frequency multiply with the damping ratio.

According to the second-order transfer function described in Eq. S1, an approximated dynamic (state-
space) model of the system can be written as follows:

ẋ = Ax + Bu, (S2) ẋ
ẍ
...
x

 =

0 1 0
0 0 1
0 −α −β

xẋ
ẍ

 +

 0
0
−α

u, (S3)

where ẋ is the derivative of the state vector (velocity (ẋ), acceleration (ẍ), jerk ( ...
x )), x is the state vector

(position (x), velocity (ẋ), acceleration (ẍ)), A is the system matrix, B is the input matrix, α is equal to b2,
β is equal to 2a, and u is the input command (velocity command in the x-axis).
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According to the derived system identification, we flew the UAV with the step input command (flew
the UAV at speed 1.0 and -1.0 m/s alternately for a certain period of time), then recorded all states of the
UAV, control input (velocity command), and running times. From the recorded data, we approximated
parameters α and β (see Eq. S3) of the dynamic model by using the BFGS optimization method (Virtanen
et al., 2020) and applied the sum of square error as the cost function. The optimization algorithm is shown
in Supplementary Algorithm 1. By doing so, the approximated parameters were α = 2.05038782, β =
1.3975637. Furthermore, we also compared the velocity response of the system using the approximated
dynamic model and the actual recorded data of the reference system (Supplementary Fig. S4).

Supplementary Algorithm 1 Parameters Approximation
1: dataset← load reference dataset(vact, uref , t)
2: mod param← [1, 1] ▷ initial dynamic model parameters
3: dynamic model← create dynamic model(mod param)
4: function PARAM EST(c input, uav state,mod param,mpc param, xref )
5: cost, v est← 0 ▷ initial cost value and estimate velocity
6: N ← dataset length
7: for i in dataset length do
8: ti, ui, vi ← dataset.t[i], dataset.uref [i], dataset.vact[i]
9: v esti ← dynamic model(ui, ti, v esti−1)▷ scipy solve an initial value problem for a system

of ODEs
10: cost← cost+ (vi−v esti)

2

N ▷ calculate cost value (sum of square error)
11: return cost
12: output← minimize(PARAM EST,mod param,method = (BFGS)) ▷ scipy BFGS optimization

method

Supplementary Fig. S4. The performance comparison of the velocity step response between the actual
(v act) and approximated (v appx) systems.

3.2 Explicit MPC for Speed Adaptation
Since the online computational speed for optimizing and generating a control command of the MPC

required among calculation time and was not suitable for the UAV system, we applied an explicit MPC
technique instead. The explicit MPC is the implementation technique of the MPC which requires less online
computation effort by using pre-offline computation to optimize the control command for all possible
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operating states. The computed result can be stored in a form of a table for looking up when performing
tasks or in a form of a neural network that is trained using the computed result as the training data set . In
this experiment, we used a table for implementing the explicit MPC as the speed adaptation controller of
the UAV. To execute this, the first step was the pre-offline optimization to find the optimal control command
for every possible states of the UAV. Therefore, we designed the cost function as shown in Eq. S4. The
optimization process was executed using Trust-Region Constrained optimization method (Virtanen et al.,
2020) to minimize the cost function. The MPC (pre-offline) optimization diagram and algorithm are shown
in Supplementary Fig. S5 and Supplementary Algorithm 2. By doing so, we obtained the optimized result
for all possible states of the UAV and their optimal control input command.

min
u

J(x, u) =
N∑
i=1

(
wx(xref − xi)

2 + wu(ui − ui−1)
2 + wos

((xref − xi)− |xref − xi|
2

)2
)
, (S4)

where J is the cost function. x is the position of the UAV. u is the control input. wx is the weighting
coefficient reflecting the relative importance of the position error which is set to 5. wu is the weighting
coefficient reflecting the relative importance of the derivative of the control input which is set to 10. wos is
the weighting coefficient reflecting the relative importance of the derivative of the overshoot position error
which is set to 100. N is the control horizon.

ሶ𝒙 = 𝑨𝒙 + 𝑩𝑢

Optimizer

𝒙

𝑢

𝒙𝑟𝑒𝑓

reference state 

input commands
(velocity)

dynamic model𝒙𝑐𝑟𝑟

current state 

output

𝒙𝑐𝑟𝑟 , 𝑢𝑜𝑝𝑡

MPC Optimization

Supplementary Fig. S5. Diagram of the MPC optimization.

The implementation diagram of the speed adaptation using the neural control and the explicit MPC as the
main controller are presented in Supplementary Fig. S6(a) and S6(b), respectively. From the optimized
result getting in the previous step, we used it as the speed adaptation controller by creating the closed-loop
speed adaptation control as shown in Supplementary Fig. S6(b). The dashed lines show the pre-offline
computed to optimize the control commands for all states of the UAV which were stored in a form of a
matching table between each state of the UAV and its optimal control input command. The solid lines show
the closed-loop control using currently state of the UAV as an input to look up its optimal control command
from the table and then feed into the UAV to perform speed adaptation. Supplementary Fig. S7 shows the
comparative performance graphs of the UAV flying at five different maximum speeds (0.5, 0.75, 1.0, 1.25,
and 1.5 m/s) when performing speed adaptation using our neural control and the explicit MPC.
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Supplementary Algorithm 2 MPC Optimization
1: function COST CAL(c input, uav state,mod param,mpc param, xref )
2: dynamic model← create dynamic model(mod param)
3: control horizon← mpc param[0]
4: control period← mpc param[1]
5: system period← mpc param[2]
6: c range← (0, 1 ∗ control period, 2 ∗ control period, . . . , control horizon ∗ control period)
7: c input appx← f = approx(c input, c range) ▷ PCHIP 1-D monotonic cubic interpolation
8: s range← (0, 1 ∗ system period, 2 ∗ system period, . . . , control horizon∗, control period)
9: statei−1 ← uav state ▷ initial UAV’s state

10: ui−1 ← 0 ▷ initial previous control input value
11: sum cost← 0 ▷ initial cost value
12: for i in s range do
13: ti ← s range[i] ▷ current time (t)
14: ui ← c input appx[t] ▷ control input value at time t
15: statei ← dynamic model(ui, ti, statei−1)▷ scipy solve an initial value problem for a system

of ODEs
16: xi ← statei.x ▷ get new UAV’s position
17: sum cost← sum cost+ cost function(xref , xi, ui, ui−1) ▷ calculate cost value
18: return sum cost
19: function MPC SOLVER(uav state, c input limit,mod param,mpc param, xref )
20: control horizon← mpc param[0]
21: c input← [0] ∗ control horizon ▷ initial a control input a matrix
22: u optimal ← minimize(COST CAL, c input, args =

(uav state,mod param,mpc param, xref ), bounds = (−c input limit, c input limit),method =
(trust− constr)) ▷ scipy Trust-Region Constrained optimization

23: return uav state, u optimal
24: mod param ▷ define model parameters (using estimated parameters)
25: mpc param← [control horizon, control period, system period] ▷ define mpc parameters to the

system
26: pos range, vel range, acc range ▷ define possible UAV’s state
27: c input limit ▷ define control input (velocity) limit
28: x ref ▷ define reference position
29: for pos in pos range do
30: for vel in vel range do
31: for acc in acc range do
32: uav state← pos, vel, acc
33: output← MPC SOLVER(uav state, c input limit,mod param,mpc param, xref )

4 NEURAL CONTROL AND ONLINE LEARNING IN VERTICAL PLANE
Here, we performed a similar experiment to learn the weights of the speed control parameter (predictive
weights) in the vertical plane when the UAV flew upward and downward for both in real and simulated
environments. The experimental setup is shown in Supplementary Fig. S8. In this experiment, we reduced
the predictive range and the free space between the starting point to the virtual predictive line by half
compared to the experimental setup in the horizontal plane (see Fig. 5 in the main paper) since the
experimental space in the real environment was limited. Additionally, we set the initial predictive weight
to 0.5 in order to decrease the overshoot distance of the UAV for a safety reason. Herein, we first
started the experiment in a real environment using a learning rate of 0.3. The results in Supplementary
Fig. S9(a), (b), and (c) show real-time data during online learning while flying the UAV upward at maximum
speeds of 0.5, 1.0, and 1.5 m/s, respectively. The approximated predictive weights with the corresponding
maximum flying speeds of the UAV when flying upward are shown in Supplementary Fig. S9(d). The
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Supplementary Fig. S6. (a) Closed-loop speed adaptation control using the neural control as the main
controller. (b) Closed-loop speed adaptation control using the explicit MPC as the main controller. Solid
lines show the signal flow in real time, while dash lines show the pre-offline calculation of the MPC
optimization.
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Supplementary Fig. S7. Performance comparison of the UAV, when flying at five different maximum
speeds (0.5, 0.75, 1.0, 1.25, and 1.5 m/s) using our neural control and the explicit MPC.

Frontiers 7



Supplementary Material

results of flying the UAV downward are shown in Supplementary Fig. S10(a) and (b) for maximum speeds
of 0.5 and 1.0 m/s, respectively. The approximated predictive weights when the UAV flying downward are
shown in Supplementary Fig. S10(c).

We also verified the usability of the approximated weights by flying the UAV upward at other different
speeds (i.e., 0.75 and 1.25 m/s) and flying the UAV downward at another different speed (i.e., 0.75 m/s). We
used the initial predictive weights of the corresponding speeds, which are 1.15, 1.18, and 1.15, respectively
(see Supplementary Fig. S9(d) and S10(c)). The results show in Supplementary Fig. S11(a), (b), and (c).
Furthermore, we repeated these experiments in the simulated environment using a learning rate of 0.1. The
results are shown in Supplementary Fig. S12, S13, and S14.
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Supplementary Fig. S8. Vertical plane experimental setup for neural control with online learning of a
UAV which shows a side view of the flying environment and also predictive and reflexive ranges with
respect to the virtual obstacle. (a) Experimental setup for the UAV to fly upward, in this setup, the virtual
obstacle was placed at position z = 3.0, with the virtual predictive line and virtual reflexive line located
at z = 2.5 m and 1.25 m, respectively. In other words, the predictive range was 1.25 m and the reflexive
range was 0.5 m. The UAV started flying at position z = 0.5 m. (b) Experimental setup for the UAV to fly
downward, in this setup, the virtual obstacle was placed at position z = 0.5, with the virtual predictive line
and virtual reflexive line located at z = 1.0 m and 2.25 m, respectively. In other words, the predictive range
was 1.25 m and the reflexive range was 0.5 m. The UAV started flying at position z = 3.0 m.
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Supplementary Fig. S9. Real-time data of speed adaptation during online learning while flying the real
UAV upward at maximum speeds of (a) 0.5 m/s, (b) 1.0 m/s, and (c) 1.5 m/s. (d) The approximated predictive
weights based on the learned weights at the maximum flying speeds of 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, and 1.5
m/s. Note that p signal denotes the predictive signal, r signal denotes the reflexive signal, dr/dt denotes
derivative of the reflexive signal, p weight denotes the predictive weight, vel z denotes the actual velocity (z-
axis) of the UAV, pos z denotes the position on the z-axis of the UAV compared to the virtual reflexive line
(blue line). A video of this experiment can be viewed on www.manoonpong.com/DSA/video4.mp4
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Supplementary Fig. S10. Real-time data of speed adaptation during online learning while flying the
real UAV downward at maximum speeds of (a) 0.5 m/s and (b) 1.0 m/s. (c) The approximated predictive
weights based on the learned weights at the maximum flying speeds of 0.5, 0.7, 0.9, and 1.0 m/s. Note that
p signal denotes the predictive signal, r signal denotes the reflexive signal, dr/dt denotes derivative of the
reflexive signal, p weight denotes the predictive weight, vel z denotes the actual velocity (z-axis) of the
UAV, pos z denotes the position on the z-axis of the UAV compared to the virtual reflexive line (blue line).
A video of this experiment can be viewed on www.manoonpong.com/DSA/video4.mp4

10

www.manoonpong.com/DSA/video4.mp4


Supplementary Material

(a)

virtual reflexive line

(c)

virtual reflexive line

(b)

virtual reflexive line

Supplementary Fig. S11. Real-time data when flying the real UAV upward at maximum speeds of (a)
0.75 m/s and (b) 1.25 m/s. (c) Flying the UAV downward at a maximum speed of 0.75 m/s. The used
predictive weights were 1.15, 1.18, and 1.15 (from Supplementary Fig. S9(d) and S10(c)), respectively.
Note that p signal denotes the predictive signal, vel z denotes the actual velocity (z-axis) of the UAV, pos z
denotes the position on the z-axis of the UAV compared to the virtual reflexive line (blue line).
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Supplementary Fig. S12. Real-time data of speed adaptation during online learning while flying the
simulated UAV upward at maximum speeds of (a) 0.5 m/s, (b) 1.0 m/s, and (c) 1.5 m/s. (d) The approximated
predictive weights based on the learned weights at the maximum flying speeds of 0.5, 0.7, 0.9, 1.0, 1.1, 1.3,
and 1.5 m/s. Note that p signal denotes the predictive signal, r signal denotes the reflexive signal, dr/dt
denotes derivative of the reflexive signal, p weight denotes the predictive weight, vel denotes the actual
velocity (z-axis) of the UAV, pos z denotes the position on the z-axis of the UAV compared to the virtual
reflexive line (blue line).
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(a) (b)
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Supplementary Fig. S13. Real-time data of speed adaptation during online learning while flying the
simulated UAV downward at maximum speeds of (a) 0.5 m/s, (b) 1.0 m/s, and (c) 1.5 m/s. (d) The
approximated predictive weights based on the learned weights at the maximum flying speeds of 0.5, 0.7,
0.9, 1.0, 1.1, 1.3, and 1.5 m/s. Note that p signal denotes the predictive signal, r signal denotes the reflexive
signal, dr/dt denotes derivative of the reflexive signal, p weight denotes the predictive weight, vel denotes
the actual velocity (z-axis) of the UAV, pos z denotes the position on the z-axis of the UAV compared to
the virtual reflexive line (blue line).
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Supplementary Fig. S14. Real-time data when flying the simulated UAV upward at maximum speeds of
(a) 0.75 m/s and (b) 1.25 m/s. (c) Flying the UAV downward at maximum speeds of 0.75 m/s and (d) 1.25
m/s. The used predictive weights were 0.96, 0.98, 0.95, and 0.97 (from Supplementary Fig. S12(d) and
S13(d)), respectively. Note that p signal denotes the predictive signal, vel z denotes the actual velocity
(z-axis) of the UAV, pos z denotes the position on the z-axis of the UAV compared to the virtual reflexive
line (blue line).
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