Glucose-derived raspberry ketone produced *via* engineered *Escherichia coli* metabolism

Shunsuke Masuo, Chisa Saga, Kurumi Usui, Yuma Sasakura, Yukie Kawasaki, and Naoki Takaya*

Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan

Corresponding Author: Naoki Takaya

E-mail: takaya.naoki.ge@u.tsukuba.ac.jp

Tel.: 81-29-853-4937

Fax:81-29-853-7191

Table S1. Strains used in this study.

E. coli strains	Relevant genotype	Reference
JM109	endA1 recA1 gyrA96 thi-1 hsdR17 (r_{K}^{-}, m_{K}^{+}) relA1 supE44	Novagen
	Δ (lac-proAB) / F' [<i>traD36 proA</i> ⁺ <i>B</i> ⁺ <i>lacI</i> ^q <i>lacZ</i> Δ <i>M15</i>]	
BL21(DE3)	$F^- ompT hsdS_B(r_B^- m_B^-) gal dcm \lambda(DE3)$	Novagen
NST37(DE3)	aroG39 aroF394 PheA101 pheO352 tyrR366 tyrA4 trpE401	Masuo et al.
/∆pheLA	$lacY5 malT384 thi-1 \lambda(DE3) \Delta pheLA$	2016
AT	BL21(DE3) harboring pET-tyrA/pACYC-aroG4	This study
NT	NST37(DE3)/ApheLA harboring pET-tyrA/pACYC-aroG4	This study
РО	BL21 (DE3) <i>ApoxB</i> ::Km ^r	This study
TY	BL21 (DE3) <i>AtyrR</i> ::Zeo ^r	This study
AT1	TY harboring pET-tyrA/pACYC-aroG4	This study
AT2	TY harboring pET-tyrA/pACYC-aroG4/pRSF-Rgpal	This study
AT2Ri	TY harboring pET-tyrA/pACYC-aroG4/pRSF-Rgpal/pCDF-	This study
	AtCL-RiBAS	
AT2RiSV	TY harboring pET-tyrA/pACYC-aroG4/pRSF-Rgpal/pCDF-	This study
	AtCL-RiBAS ^{S338V}	
AT2Rp	TY harboring pET-tyrA/pACYC-aroG4/pRSF-Rgpal/pCDF-	This study
	AtCL-RpBAS	
AT2RpSV	TY harboring pET-tyrA/pACYC-aroG4/pRSF-Rgpal/pCDF-	This study
	AtCL-RpBAS ^{S331V}	
AT3	TY haroring pET-fabF	This study
AT3RpSV	TY harboring pET-tyrA/pACYC-aroG4/pRSF-Rgpal/pCDF-	This study
	AtCL-RpBAS ^{S331V} -fabF	
BFev	BL21 (DE3) harboring pET-FevV	This study
BRg	BL21 (DE3) harboring pET-28a-pal	This study
BCs	BL21 (DE3) harboring pET-Cspal	This study
BLe	BL21 (DE3) harboring pET-Lepal	This study

Plasmid	Description	Reference
pETduet-1	Expression vector. Ampicillin resistance (Amp ^r).	Novagen
pCDFduet-1	Expression vector. Streptomycin resistance (Sm ^r).	Novagen
pRSFduet-1	Expression vector. Kanamycin resistance (Km ^r).	Novagen
pACYC-aroG4	$aroG^{/br}$ under the control of native $aroG$ promoter.	Masuo et al. 2016
pET-FevV	<i>fevV</i> (TAL gene from <i>Streptomyces</i> sp. WK-5344) under the control of T7 promoter (Amp ^{r}).	Kawaguchi et al. 2017
pET-28a-pal	<i>Rgpal</i> (PAL gene from <i>Rhodotorula glutinis</i>) under the control of T7 promoter (Amp ^r).	Zhu et al. 2013
pET-Cspal	<i>Cspal</i> (PAL gene from <i>Camellia sinensis</i>) under the control of T7 promoter (Amp ^r).	This study
pET-Lepal	<i>Lepal</i> (PAL gene from <i>Lithospermum erythrorhizon</i>) under the control of T7 promoter (Amp ^r).	This study
pET-tyrA	<i>tyrA</i> under the control of T7 promoter (Amp ^r).	This study
pRSF-Rgpal	Rgpal under the control of T7 promoter (Km ^r).	This study
pCDF-AtCL-RiBAS	<i>AtCL</i> (CL gene from <i>Agrobacterium tumefaciens</i>) and <i>RiBAS</i> (BAS gene from <i>Rubus idaeus</i>) under the control of T7 promoters (Sm ^r).	This study
pCDF-AtCL- RiBAS ^{S338V}	AtCL and RiBAS ^{S338V} under the control of T7 promoters (Sm ^r).	This study
pCDF-AtCL-RpBAS	<i>AtCL</i> and <i>RpBAS</i> (BAS gene from <i>Rhemu palmatum</i>) under the control of T7 promoters (Sm ^r).	This study
pCDF-AtCL- RpBAS ^{S331V}	AtCL and $RpBAS^{S331V}$ under the control of T7 promoters (Sm ^r).	This study
pET-fabF	fabF under the control of T7 promoter (Amp ^r).	This study
pCDF-AtCL- RpBAS ^{\$331V} -fabF	<i>AtCL,</i> $RpBAS^{S331V}$ and $fabF$ under the control of T7 promoters (Sm ^r).	This study

Table S2. Plasmids used in this study.

Table S2. List of primers.

Name	Nucleotide sequence (5'-3')	Used to generate
tyrA_fw	ACTTTAAGAAGGAGATATACCATGGTTGCTGAATTGACC	E. coli tyrA
tyrA_rv	CAGGCGCGCGAGCTCGAATTCGGATCCTTACTGGCGAT	
	TGTCATTC	
DpoxB_fw	TCAGATGAACTAAACTTGTTACCGTTATCACATTCAGGA	poxB disruption
	GATGGAGAACCAATTAACCCTCACTAAAGGGCG	
DpoxB_rv	CGTAAATCAATCATGGCATGTCCTTATTATGACGGGAAA	
	TGCCACCCTTTTAATACGACTCACTATAGGGCTC	
C1	GGCTATTTAACCGTTAGTGC	Diagnostic PCR for
		poxB
C2	CCATCATCGCTTCGAGCATG	disruption
DtyrR_fw	ATAGTGTCATATCATCATATTAATTGTTCTTTTTCAGGT	tyrR disruption
	GAAGGTTCCCAATTAACCCTCACTAAAGGGCG	
DtyrR_rv	AGCATAATTTAATATGCCTGATGGTGTTGCACCATCAGG	
	CATATTCGCGCTAATACGACTCACTATAGGGCTC	
C3	TGACAGAAACCTTCCTGCTATC	Diagnostic PCR for
		tyrR
C4	ATTACGAAGCAGCTCTGGCTGTAC	disruption
AtCL_fw	CCGAATTCGATGAGTGTGAAACTTTGGTCGCC	A. tumefaciens Atu1416
AtCL_rv	CGGTCGACTCATGCTGCTACCTCTCTGCC	
RiBASmuFw	GAGTATGGGAACATGGTGTCTGCGTGTGTGTTG	RiBAS ^{S338V}
RiBASmuRv	CAACACACGCAGACACCATGTTCCCATACTC	
RpBASmuFw	GACTATGGGAACATGTCAAGTGCGACCGTGTTC	RpBAS ^{S331V}
RpBASmuRv	GAACACGGTCGCACTTGACATGTTCCCATAGTC	
fabF_fwCDF	ACTTTAATAAGGAGATATACCATGTCTAAGCGTCGTGTA	E. coli fabF (pCDF-
	G	fabF
fabF_rvCDF	TTAAGCATTATGCGGCCGCATTAGATCTTTTTAAAGATC	construction)
	AAAGAAC	
fabF_fwET	ACTTTAAGAAGGAGATATACCATGTCTAAGCGTCGTGTA	<i>E. coli fabF</i> (pET-fabF
	G	
fabF_rvET	AGTGGTGGTGGTGGTGGTGGTGCTTAGATCTTTTTAAAGATC	construction)
	AAAGAAC	
pET28b-	GTCTACTAGCGCAGCTTAATGCGAAATTAATACGACTCA	Partial region of pET-
fabF_fw	CTATAGGG	fabF (pCDF-AtCL-
pET28b-	TGGCAGCAGCCTAGGTTAATTGGCAGCAGCCAACTCAG	RpBAS ^{S338V} -fabF
fabF rv		construction)

Figure S1. (A) HPLC findings of BL21 (DE3) and BL21 (DE3) harboring pET-tyrA and pACYC-aroG^{fbr}. (B) Tyrosine production by BL21 (DE3) and NST37 (DE3): Δ pheA.

E. coli strains retained either pET-tyrA/pACYC-aroGfbr or empty plasmids, and were cultured in fermentation medium at 30°C for 60 h.

Figure S2. Acetate concentrations and sediments produced by E. coli AT1

(A) Acetate concentrations in AT1 fed-batch culture (Fig. 2C). (B) White sediments produced by AT1 were resolved in 0.1 M NaOH and centrifuged to remove debris. Tyrosine was precipitated from the supernatant at pH 7.0 with 0.1 M HCl and dried (Inset).

Fig. S3

Figure S3. Alignment of amino acid sequences between BAS of *Rubus idaeus* (RiBAS) and *Rhemu palmatum* (RpBAS). Arrow indicates mutated serine residue.

Fig. S4

Figure S4. Production of RK by E. coli AT3RpSV strain under various conditions.

Each of aeration (A), medium (B), and IPTG concentrations (C) were varied. AT3RpSV was cultured in modified fermentation medium or the indicated medium at 30°C for 60 h. Culture flasks were capped with air-permeable silicon or non-permeable rubber. Modified TB comprised standard TB medium containing 20 mM MOPS (pH 7.0).