
Supplemental Materials - Methods

Methods Section 1 - remote sensing methods for wetland hydrology trends
Following the methods that Donnelly et al. (2021) outlined, wetland and agricultural surface
water conditions were measured monthly as a five-year running means using constrained spectral
mixture analysis (SMA; Adams and Gillespie, 2006). This approach allowed proportional
estimations of water contained within a continuous 30×30 m pixel grid (Halabisky et al., 2016;
Jin et al. 2017) and provided an accurate account of flooding when detectability was reduced due
to interspersion of emergent vegetation, shallow, or turbid water (DeVries et al., 2017),
characteristics common to seasonal wetlands in semi-arid regions (Jolly et al., 2008). Because
these conditions can partially mask areas covered with water (Donnelly et al., 2019), we
considered pixels fully inundated when water was present. Pixels containing <15% surface water
were omitted from summaries to minimize the overestimation of surface water area.

Satellite data used for SMA were formatted by binning individual Landsat scenes by
month and averaging results into twelve composite images for each five-year mean. Results
provided 444 unique monthly measures of wetland-agriculture surface water for the SONEC and
Central Valley regions. Areas containing cloud, cloud shadow, snow, and ice were masked using
the Landsat CFMask band (Foga et al., 2017). All unmasked pixels in Landsat 30 m visible,
near-infrared, and short wave infrared bands were incorporated into SMA except for Landsat 8
coastal aerosol band. Surface water was not measured in 2012 due to poor quality satellite
imagery.

Training data for SMA were extracted from satellite imagery as spectral end members
unique to individual images classified. Training site locations represented homogeneous land
cover types mapped as water, wetland vegetation, upland, and alkali soil. Spectral end members
for water were collected using image masks generated from 99th percentile normalized
difference water index values (McFeeters, 1996), coincident with large deepwater lakes within
both regions. A similar masking approach was applied to collect wetland vegetation end
members using normalized difference vegetation indices (Box et al., 1989). Sampling was
constrained to sites coincident with flooded wetlands and representative of associated plant
phenology. Spectral mixture analysis requires minimal training data (Adams and Gillespie, 2006)
that allows upland and alkali soil end members to be generated from a small number of static
plots within the regions (n = 4; 0.5-1 km2). Upland plots were associated with homogenous
shrublands characterized by low vegetative productivity and high soil exposure. Alkali soil plots
were coincident with dry lake basins in surface mineral deposits. Plot locations were identified
using high resolution (< 0.5 m) multispectral satellite imagery or field survey. All image
processing and raster‐based analyses were conducted using Google Earth Engine cloud‐based
geospatial processing platform (Gorelick et al., 2017).

Supplemental Section 2 - change detection methods for wetland loss
Change detection analysis was used to designate wetland or flooded agricultural declines as
functional or physical loss to discern underlying drivers of change. Functional losses were
attributed to areas of diminishing surface water (i.e. drying) associated with shifts in ecological
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water balance or water management in the absence of physical alterations. Land conversion (e.g.,
urban expansion or shifting agricultural practices) resulting in surface water declines were
identified as physical loss. Areas of change were delineated by differencing mean monthly
(Jan-Dec) surface water conditions between P1 (1984-1991) and P2 (2013-20). Using a GIS,
change areas were visually inspected through on-screen photo-interpretation of high resolution
(≤ 1 m) multispectral satellite imagery (acquired 2018 or later) to identify areas of physical loss.
Surface water conditions for P1 and P2 were derived using remote-sensing methods outlined in
Supplemental Section 1. All image processing and raster‐based analyses were conducted using
Google Earth Engine cloud‐based geospatial processing platform (Gorelick et al., 2017). GIS
analyses were performed using QGIS (QGIS Development Team, 2020).

Supplemental Section 3 - eBird-traditional survey comparison
To compare temporal abundance distributions derived from the eBird Basic Dataset (EBD)
(Sullivan et al., 2009) and traditional survey methods (i.e., aerial survey and systematic ground
counts), waterbird counts were binned bi-weekly and summed across years. Results were then
grouped by region, species, and survey type and scaled to relative values. Boxplots and
non-parametric Wilcoxon tests were used to display and compare data graphically. All available
EBD observations collected from 1984 to 2020 in the SONEC and Central Valley regions were
used in our evaluation. SONEC bi-weekly aerial waterfowl surveys conducted in the Klamath
Basin from 1984-2016 were used for EBD evaluation. Because surveys were flown during spring
(Jan-May) and fall (Sep-Dec), distributions were compared for each period using four migrating
dabbling duck species (Fig. S1-2). Although aerial survey efforts were conducted for a subset of
SONEC, results were considered representative of regional waterfowl use patterns (Donnelly et
al., 2019).

Bi-weekly ground surveys on the Sacramento National Wildlife Refuge Complex
(hereafter ‘refuge complex’) were used in the Central Valley for EBD evaluation. Ground
surveys were collected from 2011 to 2017 across six independent refuge units representing the
northern half of the Central Valley study area. For comparison, we selected five wintering
waterfowl (Figs. S3) and three fall migrating shorebird species (Fig. S4) based on their use of
habitats associated with the refuge complex. SONEC and Central Valley comparisons showed no
significant differences in temporal abundance patterns. Outcomes support previous results from
Callaghan and Gawlik (2015) and Walker and Taylor (2017) that showed EBD observations and
traditional survey efforts equivalent when applied at broad scales.
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Figure S1. Temporal distribution of dabbling duck abundance derived from eBird Basic Dataset
and aerial surveys collected during spring migration (Feb-May) in SONEC. Distributions
representative of all available eBird (1984-2020) and aerial survey counts (1984 to 2016).
Nonparametric Wilcoxon tests results by species: American Wigeon p-value 0.258,
Green-winged Teal p-value 0.776, Northern Pintail p-value 0.315, Northern Shoveler  p-value
0.972.  Boxes, interquartile range (IQR); line dividing the box horizontally, median value;
whiskers, 1.5 times the IQR; points, outliers.

temporal distribution of dabbling duck abundance derived from

Figure S2.Temporal distribution of dabbling duck abundance derived from eBird Basic Dataset
and aerial surveys collected during spring migration (Sep-Dec) in SONEC. Distributions
representative of all available eBird (1984-2020) and aerial survey counts (1984 to 2016).
Nonparametric Wilcoxon tests results by species: American Wigeon p-value 0.258,
Green-winged Teal p-value 0.776, Northern Pintail p-value 0.315, Northern Shoveler p-value
0.972.  Boxes, interquartile range (IQR); line dividing the box horizontally, median value;
whiskers, 1.5 times the IQR; points, outliers.



Figure S3. Temporal distribution of dabbling duck abundance derived from eBird Basic Dataset
and ground surveys collected during the wintering period (Oct-Mar) in the Central Valley.
Distributions representative of all available eBird (1984-2020) and ground survey counts (2011
to 2017). Nonparametric Wilcoxon tests results by species: American Wigeon p-value 0.480,
Green-winged Teal p-value 0.893, Northern Pintail p-value 0.757, Northern Shoveler p-value
0.941, Ring-necked Duck p-value 0.628.  Boxes, interquartile range (IQR); line dividing the box
horizontally, median value; whiskers, 1.5 times the IQR; points, outliers.

Figure S4. Temporal distribution of shorebird abundance derived from eBird Basic Dataset and
ground surveys collected from August to December in the Central Valley (see Fig. 1).
Distributions representative of all available eBird (1984-2020) and ground survey counts (2011
to 2017). Nonparametric Wilcoxon tests results by species: Black-necked Stilt p-value 0.968,
Dunlin p-value 0.072, Long-billed Dowitcher p-value 0.698.  Boxes, interquartile range (IQR);
line dividing the box horizontally, median value; whiskers, 1.5 times the IQR; points, outliers.



Supplementary Materials -- Results
Table S1. SONEC all wetlands - P1 (1988-2004) and P2 (2005-20) median monthly surface
water change. Areas (ha) include wetlands associated with closed basin lakes, public-private
lands, and wildlife refuges.

Hydroperiod Month P1 (1988-2004) P2 (2004-2020) Difference % Difference Wilcox p

Jan 183,964 89,818 -94,147 -51% 0.000

Feb 189,984 122,833 -67,151 -35% 0.002

Mar 213,765 156,377 -57,388 -27% 0.000

Apr 220,250 160,551 -59,699 -27% 0.000

May 246,637 157,925 -88,712 -36% 0.000

semi-permanent Jun 242,978 162,556 -80,422 -33% 0.000

Jul 243,206 152,021 -91,185 -37% 0.000

Aug 229,178 144,744 -84,434 -37% 0.000

Sep 216,979 140,497 -76,482 -35% 0.000

Oct 216,636 117,410 -99,226 -46% 0.000

Nov 194,011 113,630 -80,381 -41% 0.000

Dec 187,751 110,171 -77,580 -41% 0.000

Jan 22,687 18,139 -4,547 -20% 0.102

Feb 36,228 39,209 2,980 8% 0.204

Mar 41,984 50,821 8,836 21% 0.004

Apr 39,804 52,155 12,351 31% 0.001

May 37,862 51,196 13,334 35% 0.002

seasonal Jun 33,661 45,951 12,290 37% 0.001

Jul 22,837 16,408 -6,429 -28% 0.023

Aug 5,562 3,845 -1,717 -31% 0.191

Sep 2,849 2,993 144 5% 0.998

Oct 4,651 7,428 2,778 60% 0.001

Nov 10,793 12,104 1,312 12% 0.049

Dec 18,119 18,716 598 3% 0.873

Jan 27,519 40,603 13,084 48% 0.136

Feb 56,432 55,041 -1,390 -3% 0.606

Mar 37,641 39,312 1,671 4% 0.709

Apr 23,915 32,674 8,759 37% 0.191

May 19,081 31,081 12,000 63% 0.000

temporary Jun 13,315 15,191 1,876 14% 0.204

Jul 3,986 2,054 -1,932 -49% 0.008

Aug 388 605 217 56% 0.127

Sep 385 509 123 32% 0.045

Oct 987 2,028 1,041 106% 0.000

Nov 9,116 9,372 256 3% 0.465

Dec 24,954 23,567 -1,387 -6% 0.444



Table S2. SONEC  closed basin lakes - P1 (1988-2004) and P2 (2005-20) median monthly
surface water change. Areas (ha)  inclusive of all littoral-lacustrine wetland systems.

Hydroperiod Month P1 (1988-2004) P2 (2004-2020) Difference % Difference Wilcox p

Jan 132,014 62,045 -69,969 -53% 0.000

Feb 147,516 88,625 -58,891 -40% 0.001

Mar 157,163 113,450 -43,712 -28% 0.000

Apr 167,473 115,991 -51,481 -31% 0.000

May 183,108 120,152 -62,956 -34% 0.000

semi-permanent Jun 182,999 122,005 -60,994 -33% 0.000

Jul 182,902 117,643 -65,259 -36% 0.000

Aug 178,617 114,286 -64,331 -36% 0.000

Sep 169,799 112,115 -57,685 -34% 0.000

Oct 167,106 88,037 -79,069 -47% 0.000

Nov 151,571 84,091 -67,481 -45% 0.000

Dec 145,878 85,281 -60,597 -42% 0.000

Jan 4,298 6,733 2,434 57% 0.326

Feb 8,231 11,888 3,657 44% 0.025

Mar 6,499 17,371 10,872 167% 0.005

Apr 9,385 23,608 14,223 152% 0.000

May 11,409 24,169 12,760 112% 0.000

seasonal Jun 10,476 22,618 12,142 116% 0.000

Jul 8,661 8,502 -159 -2% 0.845

Aug 2,099 2,240 141 7% 0.763

Sep 864 1,621 757 88% 0.245

Oct 1,120 2,574 1,454 130% 0.001

Nov 2,322 5,976 3,654 157% 0.000

Dec 4,569 7,818 3,250 71% 0.058

Jan 4,798 8,324 3,526 74% 0.025

Feb 7,649 12,314 4,664 61% 0.045

Mar 2,675 7,363 4,688 175% 0.023

Apr 3,647 12,830 9,183 252% 0.001

May 3,699 13,504 9,806 265% 0.000

temporary Jun 2,041 7,504 5,463 268% 0.001

Jul 1,122 498 -624 -56% 0.245

Aug 87 264 177 203% 0.017

Sep 93 205 111 119% 0.003

Oct 159 563 404 254% 0.000

Nov 855 1,944 1,089 127% 0.009

Dec 4,420 4,793 373 8% 0.736



Table S3. SONEC wildlife refuges - P1 (1988-2004) and P2 (2005-20) median monthly surface
water change. Areas (ha) exclusive to state and federally managed wildlife refuges.

Hydroperiod Month P1 (1988-2004) P2 (2004-2020) Difference % Difference Wilcox p

Jan 12,870 8,714 -4,156 -32% 0.000

Feb 15,623 11,399 -4,224 -27% 0.000

Mar 15,566 12,578 -2,989 -19% 0.000

Apr 14,658 12,449 -2,209 -15% 0.001

May 15,107 11,128 -3,979 -26% 0.000

semi-permanent Jun 14,756 11,296 -3,460 -23% 0.000

Jul 13,063 9,765 -3,298 -25% 0.000

Aug 11,691 8,262 -3,429 -29% 0.000

Sep 11,348 7,803 -3,544 -31% 0.000

Oct 12,695 10,401 -2,295 -18% 0.000

Nov 13,898 10,884 -3,015 -22% 0.000

Dec 12,810 9,613 -3,197 -25% 0.000

Jan 6,466 4,054 -2,412 -37% 0.031
Feb 11,319 7,059 -4,260 -38% 0.204
Mar 11,844 13,278 1,434 12% 0.309
Apr 9,202 10,816 1,614 18% 0.127
May 5,709 7,595 1,886 33% 0.034

seasonal Jun 3,962 6,613 2,651 67% 0.015
Jul 1,836 1,887 51 3% 0.873

Aug 360 304 -56 -16% 0.533
Sep 378 335 -42 -11% 0.231
Oct 1,059 1,179 119 11% 0.292
Nov 3,093 2,243 -850 -27% 0.017
Dec 4,967 3,797 -1,170 -24% 0.023

Jan 6,364 4,771 -1,593 -25% 0.790
Feb 13,003 8,342 -4,660 -36% 0.005
Mar 10,580 9,657 -923 -9% 0.292
Apr 5,986 4,498 -1,488 -25% 0.488
May 2,393 2,490 98 4% 0.709

temporary Jun 1,186 1,997 812 68% 0.025
Jul 574 410 -164 -29% 0.191

Aug 55 93 38 68% 0.008
Sep 94 112 18 20% 0.557
Oct 280 353 72 26% 0.402
Nov 1,362 1,142 -220 -16% 0.276
Dec 5,264 3,740 -1,524 -29% 0.146



Table S4. SONEC public wetlands - P1 (1988-2004) and P2 (2005-20) median monthly surface
water change. Areas (ha)  encompass un-managed or natural wetlands on public lands
administered by, but not limited to the U.S. Forest Service and Bureau of Land Management.

Hydroperiod Month P1 (1988-2004) P2 (2004-2020) Difference % Difference Wilcox p

Jan 13,525 5,361 -8,164 -60% 0.008

Feb 12,800 10,234 -2,566 -20% 0.041

Mar 18,875 11,332 -7,543 -40% 0.000

Apr 16,487 11,763 -4,724 -29% 0.002

May 18,244 11,030 -7,214 -40% 0.000

semi-permanent Jun 17,704 11,381 -6,323 -36% 0.000

Jul 17,971 10,184 -7,787 -43% 0.000

Aug 16,598 9,537 -7,061 -43% 0.001

Sep 13,358 9,085 -4,273 -32% 0.000

Oct 13,338 9,078 -4,260 -32% 0.003

Nov 13,564 9,434 -4,131 -30% 0.000

Dec 12,245 6,278 -5,967 -49% 0.004

Jan 4,785 2,501 -2,284 -48% 0.034

Feb 7,265 9,342 2,077 29% 0.023

Mar 9,660 10,191 531 6% 0.790

Apr 9,884 10,491 607 6% 0.873

May 11,063 8,999 -2,064 -19% 0.074

seasonal Jun 9,880 8,284 -1,596 -16% 0.034

Jul 7,611 2,811 -4,800 -63% 0.000

Aug 1,591 846 -745 -47% 0.002

Sep 783 568 -215 -27% 0.231

Oct 767 1,149 382 50% 0.037

Nov 2,161 2,612 452 21% 0.231

Dec 3,267 3,230 -37 -1% 0.817

Jan 5,234 7,199 1,965 38% 0.326

Feb 12,039 14,409 2,370 20% 0.260

Mar 8,669 7,578 -1,091 -13% 0.292

Apr 5,497 6,774 1,277 23% 0.292

May 4,987 5,849 863 17% 0.709

temporary Jun 3,961 3,353 -608 -15% 0.309

Jul 864 310 -554 -64% 0.000

Aug 68 101 32 47% 0.631

Sep 63 58 -4 -7% 0.986

Oct 100 336 236 237% 0.000

Nov 1,791 2,863 1,073 60% 0.010

Dec 5,398 6,972 1,574 29% 0.736



Table S5. SONEC private wetlands - P1 (1988-2004) and P2 (2005-20) median monthly surface
water change. Areas (ha) exclusive to private un-managed or natural wetlands.

Hydroperiod Month P1 (1988-2004) P2 (2004-2020) Difference % Difference Wilcox p

Jan 8,322 6,285 -2,037 -24% 0.110

Feb 9,699 9,029 -670 -7% 0.245

Mar 12,909 11,154 -1,755 -14% 0.045

Apr 12,761 11,157 -1,605 -13% 0.157

May 12,691 9,564 -3,127 -25% 0.045

semi-permanent Jun 12,705 10,767 -1,937 -15% 0.058

Jul 12,502 9,748 -2,754 -22% 0.015

Aug 11,351 7,978 -3,373 -30% 0.037

Sep 9,676 7,006 -2,670 -28% 0.058

Oct 10,644 6,959 -3,684 -35% 0.045

Nov 10,236 7,343 -2,893 -28% 0.004

Dec 9,232 5,210 -4,022 -44% 0.008

Jan 5,046 3,315 -1,731 -34% 0.510

Feb 9,102 8,856 -246 -3% 0.657

Mar 9,819 11,080 1,261 13% 0.136

Apr 8,504 9,984 1,480 17% 0.276

May 8,726 8,768 42 1% 0.901

seasonal Jun 7,699 8,311 612 8% 0.488

Jul 4,862 3,316 -1,546 -32% 0.000

Aug 1,279 672 -607 -48% 0.009

Sep 588 428 -159 -27% 0.292

Oct 687 891 204 30% 0.382

Nov 2,527 1,889 -638 -25% 0.087

Dec 3,154 2,507 -647 -21% 0.709

Jan 7,144 7,119 -25 0% 0.606

Feb 16,040 16,950 910 6% 0.292

Mar 10,098 9,812 -286 -3% 0.929

Apr 5,325 5,543 218 4% 0.790

May 3,537 3,281 -256 -7% 0.986

temporary Jun 2,679 2,682 3 0% 0.817

Jul 984 487 -496 -50% 0.010

Aug 115 94 -21 -18% 0.606

Sep 74 89 15 21% 0.444

Oct 158 222 64 41% 0.028

Nov 2,403 2,069 -334 -14% 0.191

Dec 5,970 6,382 412 7% 0.958



Table S6. SONEC flooded agriculture - P1 (1988-2004) and P2 (2005-20) median monthly
surface water change. Grass hay cultivation accounted for the vast majority of flooded
agriculture, with other crops (e.g., wheat) making up a minor component of overall abundance.

Month P1 (1988-2004) P2 (2005-2020) Difference % Difference Wilcox p

Jan 28,567 33,080 4,513 7% 0.683

Feb 51,834 33,785 -18,049 -21% 0.025

Mar 35,981 29,418 -6,563 -10% 0.11

Apr 15,849 18,552 2,703 8% 0.817

May 10,636 11,798 1,162 5% 0.631

Jun 4,797 6,104 1,307 12% 0.217

Jul 1,541 986 -555 -22% 0.006

Aug 565 621 56 5% 0.276

Sep 657 607 -50 -4% 0.79

Oct 910 1,689 779 30% 0.0579

Nov 5,474 6,717 1,243 10% 0.444

Dec 15,364 20,311 4,947 14% 0.276



Table S7. Central Valley all wetlands - P1 (1988-2004) and P2 (2005-20) median monthly
surface water change. Areas (ha)  include wetlands associated with duck clubs and wildlife
refuges.

Hydroperiod Month P1 (1988-2004) P2 (2004-2020) Difference % Difference Wilcox p

Jan 50,027 39,971 -10,055 -20% 0.009

Feb 48,900 42,706 -6,195 -13% 0.015

Mar 51,009 45,724 -5,285 -10% 0.041

Apr 46,319 41,968 -4,351 -9% 0.001

May 36,994 30,988 -6,006 -16% 0.000

semi-permanent Jun 28,293 25,424 -2,870 -10% 0.000

Jul 23,931 20,384 -3,548 -15% 0.000

Aug 22,419 19,726 -2,692 -12% 0.000

Sep 26,156 25,976 -180 -1% 0.402

Oct 40,891 38,760 -2,131 -5% 0.127

Nov 48,298 42,355 -5,944 -12% 0.003

Dec 44,996 38,328 -6,668 -15% 0.008

Jan 36,733 31,533 -5,201 -14% 0.581

Feb 45,825 33,946 -11,879 -26% 0.136

Mar 50,501 50,452 -48 0% 0.901

Apr 38,922 29,354 -9,568 -25% 0.000

May 19,058 13,085 -5,973 -31% 0.000

seasonal Jun 8,003 5,592 -2,412 -30% 0.000

Jul 3,727 2,149 -1,578 -42% 0.000

Aug 2,496 1,654 -842 -34% 0.000

Sep 4,416 4,768 352 8% 0.510

Oct 16,910 19,477 2,567 15% 0.001

Nov 37,080 34,713 -2,366 -6% 0.402

Dec 42,304 41,050 -1,253 -3% 0.465

Jan 15,661 10,588 -5,073 -32% 0.683

Feb 20,653 9,249 -11,404 -55% 0.002

Mar 17,209 27,987 10,779 63% 0.345

Apr 18,074 10,163 -7,910 -44% 0.000

May 10,296 5,896 -4,400 -43% 0.657

temporary Jun 1,903 1,406 -498 -26% 0.204

Jul 886 401 -485 -55% 0.002

Aug 747 323 -424 -57% 0.001

Sep 1,253 920 -333 -27% 0.008

Oct 3,406 3,872 466 14% 0.817

Nov 10,179 13,151 2,972 29% 0.094

Dec 18,601 22,898 4,298 23% 0.557



Table S8. Central Valley wildlife refuges - P1 (1988-2004) and P2 (2005-20) median monthly
surface water change. Areas (ha)  exclusive to state and federally managed wildlife refuges.

Hydroperiod Month P1 (1988-2004) P2 (2004-2020) Difference % Difference Wilcox p

Jan 9,005 8,562 -442 -5% 0.157

Feb 9,370 8,602 -768 -8% 0.015

Mar 9,445 8,961 -485 -5% 0.136

Apr 8,987 8,312 -674 -8% 0.006

May 5,472 4,545 -927 -17% 0.000

semi-permanent Jun 3,801 3,150 -651 -17% 0.000

Jul 3,184 2,459 -725 -23% 0.000

Aug 2,921 2,364 -558 -19% 0.000

Sep 5,012 4,326 -686 -14% 0.001

Oct 7,879 7,678 -201 -3% 0.157

Nov 8,360 8,074 -286 -3% 0.402

Dec 7,797 7,521 -276 -4% 0.423

Jan 6,483 6,902 419 7% 0.683

Feb 6,830 7,086 256 4% 0.709

Mar 7,530 8,357 827 11% 0.025

Apr 5,158 4,866 -292 -6% 0.231

May 2,205 1,253 -952 -43% 0.000

seasonal Jun 1,002 482 -519 -52% 0.000

Jul 537 231 -306 -57% 0.000

Aug 284 156 -129 -45% 0.000

Sep 708 630 -78 -11% 0.292

Oct 2,840 3,257 417 15% 0.049

Nov 3,922 5,044 1,123 29% 0.000

Dec 3,833 5,213 1,380 36% 0.000

Jan 2,854 1,895 -959 -34% 0.041

Feb 3,958 1,933 -2,026 -51% 0.001

Mar 3,976 5,136 1,159 29% 0.345

Apr 2,368 1,682 -686 -29% 0.049

May 645 355 -289 -45% 0.000

temporary Jun 210 70 -140 -67% 0.000

Jul 90 37 -53 -59% 0.000

Aug 39 35 -4 -9% 0.326

Sep 128 148 20 16% 0.423

Oct 372 397 25 7% 0.901

Nov 758 562 -196 -26% 0.345

Dec 946 928 -18 -2% 0.763



Table S9. Central Valley duck clubs - P1 (1988-2004) and P2 (2005-20) median monthly surface
water change. Areas (ha)  encompass private managed wetlands on duck clubs and wildlife
preserves.

Hydroperiod Month P1 (1988-2004) P2 (2004-2020) Difference % Difference Wilcox p

Jan 18,106 17,435 -671 -4% 0.245

Feb 19,614 18,062 -1,552 -8% 0.049

Mar 19,372 18,797 -575 -3% 0.245

Apr 17,655 16,108 -1,547 -9% 0.009

May 13,103 11,698 -1,405 -11% 0.001

semi-permanent Jun 10,305 8,883 -1,422 -14% 0.000

Jul 7,595 6,634 -962 -13% 0.000

Aug 6,965 6,161 -804 -12% 0.000

Sep 8,735 8,866 131 2% 0.736

Oct 15,700 16,090 391 2% 0.245

Nov 17,180 16,700 -480 -3% 0.146

Dec 16,479 15,163 -1,316 -8% 0.157

Jan 16,563 16,604 42 >1% 0.986

Feb 17,315 17,163 -152 -1% 0.901

Mar 18,092 17,842 -251 -1% 0.465

Apr 10,673 8,728 -1,945 -18% 0.000

May 7,111 3,901 -3,210 -45% 0.000

seasonal Jun 3,905 1,552 -2,353 -60% 0.000

Jul 1,157 625 -532 -46% 0.000

Aug 567 425 -142 -25% 0.004

Sep 1,352 1,461 109 8% 0.231

Oct 7,915 9,886 1,971 25% 0.000

Nov 12,440 12,814 374 3% 0.094

Dec 11,641 13,842 2,201 19% 0.037

Jan 8,283 5,199 -3,084 -37% 0.326

Feb 8,744 4,226 -4,518 -52% 0.001

Mar 7,702 9,929 2,228 29% 0.402

Apr 4,124 2,816 -1,308 -32% 0.007

May 2,431 1,351 -1,080 -44% 0.000

temporary Jun 962 340 -622 -65% 0.000

Jul 269 165 -104 -39% 0.002

Aug 145 154 8 6% 0.845

Sep 309 242 -67 -22% 0.041

Oct 1,200 879 -321 -27% 0.631

Nov 2,775 2,167 -607 -22% 0.309

Dec 6,299 3,802 -2,497 -40% 0.127



Table S10. Central Valley flooded agriculture - P1 (1988-2004) and P2 (2005-20) median
monthly surface water change. Rice production accounted for the vast majority of flooded
agriculture, with other crops (e.g., corn, wheat, and safflower) making up a relatively small
component of overall abundance.

Month P1 (1988-2004) P2 (2005-2020) Difference % Difference Wilcox p

Jan 100,562 129,178 28,616 29% 0.094

Feb 126,728 107,588 -19,140 -15% 0.168

Mar 111,633 114,714 3,081 3% 0.901

Apr 102,683 71,447 -31,235 -30% 0.000

May 187,093 200,724 13,631 7% 0.118

Jun 92,598 107,864 15,266 17% 0.053

Jul 7,764 6,685 -1,079 -14% 0.110

Aug 2,450 2,141 -308 -13% 0.069

Sep 6,306 3,716 -2,590 -41% 0.002

Oct 33,758 22,747 -11,011 -33% 0.002

Nov 62,253 109,335 47,082 76% 0.002

Dec 70,650 118,618 47,969 68% 0.001

Table S11. Major Reservoir storage in SONEC and the Central Valley (CV) - km3 = cubic
kilometers

Region Minimum 1st Quartile Median Mean 3rd Quartile Maximum

SONEC (taf) 110 455 648 654 837 1,223

CV (taf) 5,890 10,888 14,464 13,831 16,624 20,739

CV/SONEC 54 24 22 21 20 17

SONEC (km3) 0.136 0.561 0.799 0.807 1.032 1.509

CV (km3) 7.265 13.430 17.841 17.060 20.505 25.581



Figure S5. SONEC closed-basin lakes distribution of monthly wetland abundance (kha) between
1988-2004 (P1) and 2005-20 (P2) periods. Statistical inference determined as p-values < 0.1
derived from Wilcoxon ranked order test. Red indicates significant wetland decline and ‘blue’,
stable to increasing wetland abundance. Results are partitioned by wetland hydroperiod
(semi-permanent, seasonal, temporary). Boxes, interquartile range (IQR); line dividing the box
horizontally, median value; whiskers, 1.5 times the IQR; points, outliers.



Figure S6: SONEC wildlife refuges - distribution of monthly wetland abundance (kha) from
1988-2004 (P1) and 2005-20 (P2). Areas exclusive to state and federally managed wildlife
refuges. Statistical inference determined as p-values < 0.1 derived from Wilcoxon ranked order
test. Red indicates significant wetland decline and ‘blue’, stable to expanding wetland
abundance. Results are partitioned by wetland hydroperiod (semi-permanent, seasonal,
temporary). Boxes, interquartile range (IQR); line dividing the box horizontally, median value;
whiskers, 1.5 times the IQR; points, potential outliers.



Figure S7. SONEC public wetlands - distribution of monthly wetland abundance (kha) from
1988-2004 (P1) and 2005-20 (P2) Areas include but are not limited to National Forest, Bureau of
Land Management, and State Lands. Statistical inference determined as p-values < 0.1 derived
from Wilcoxon ranked order test. Red indicates significant wetland decline and ‘blue’, stable to
expanding wetland abundance. Results are partitioned by wetland hydroperiod (semi-permanent,
seasonal, temporary). Boxes, interquartile range (IQR); line dividing the box horizontally,
median value; whiskers, 1.5 times the IQR; points, potential outliers.



Figure S8. SONEC private wetlands - distribution of monthly wetland abundance (kha) from
1988-2004 (P1) and 2005-20 (P2). Areas were exclusive to wetlands on private lands not
associated with agriculture. Statistical inference determined as p-values < 0.1 derived from
Wilcoxon ranked order test. Red indicates significant wetland decline and ‘blue’, stable to
expanding wetland abundance. Results are partitioned by wetland hydroperiod (semi-permanent,
seasonal, temporary). Boxes, interquartile range (IQR); line dividing the box horizontally,
median value; whiskers, 1.5 times the IQR; points, potential outliers.



Figure S9. Central Valley wildlife refuges - distribution of monthly wetland abundance (kha)
from 1988-2004 (P1) and 2005-20 (P2). Areas exclusive to state and federally managed wildlife
refuges. Statistical inference determined as p-values < 0.1 derived from Wilcoxon ranked order
test. Red indicates significant wetland decline and ‘blue’, stable to expanding wetland
abundance. Results are partitioned by wetland hydroperiod (semi-permanent, seasonal,
temporary). Boxes, interquartile range (IQR); line dividing the box horizontally, median value;
whiskers, 1.5 times the IQR; points, potential outliers.



Figure S10. Central Valley duck clubs - distribution of monthly wetland abundance (kha) from
1988-2004 (P1) and 2005-20 (P2). Areas were exclusive to privately owned wetlands managed
as waterfowl hunting preservers. Statistical inference determined as p-values < 0.1 derived from
Wilcoxon ranked order test. Red indicates significant wetland decline and ‘blue’, stable to
expanding wetland abundance. Results are partitioned by wetland hydroperiod (semi-permanent,
seasonal, temporary). Boxes, interquartile range (IQR); line dividing the box horizontally,
median value; whiskers, 1.5 times the IQR; points, potential outliers.



Supplemental Materials – Recent Climate
The regional water balance between source and use ultimately controls the surface water
available for human use and wetland ecological systems in the SONEC and the Central Valley
regions. The total amount of surface water is determined by precipitation, evapotranspiration,
and resulting runoff, which drive groundwater recharge. These processes are highly modified by
direct human factors, such as water withdrawal for industrial, domestic, and agricultural use
(AghaKouchak et al., 2021). To examine climate change over the period of our analysis, we used
the TerraClimate dataset (Abatzoglou et al., 2018), a gridded (4km) monthly climate and water
balance model of terrestrial surfaces available through the Google Earth Engine platform
(Gorelick et al., 2017). TerraClimate data is compiled using a climatically aided interpolation of
relatively high resolution spatial and temporal scales, which has been validated with data from a
broad climate network, including evapotranspiration and runoff, important for determining
hydro-climate change (http://www.climatologylab.org/terraclimate.html). Each month was
smoothed with a 5-year rolling mean to match the approach used to calculate surface water
estimates to minimize inter-annual variability from exogenous and endogenous drivers. Trends
were compiled using periods aligned with surface water summaries (P1=1988-2004;
P2=2005-2020) and compared using nonparametric Wilcoxon rank order tests (Siegel, 1957). By
comparing trends over long periods, we were able to minimize the effects of shorter-term climate
cycles (e.g. El Nino Southern Oscillation; Dettinger et al., 1998) that may have influenced
results. Overall results were provided as boxplots partitioned by climate variable and region.
Data are presented in the following figures (Figures S11-S15) to show changes in climate
variables over the periods of interest presented in the Results and Discussion sections. A p-value
of < 0.1 was used to represent statistical significance.

https://paperpile.com/c/08ht8h/0AhT
https://paperpile.com/c/08ht8h/2I5XV
https://paperpile.com/c/08ht8h/2nhit
https://paperpile.com/c/08ht8h/Qh9s8
https://paperpile.com/c/08ht8h/rIezF/?prefix=e.g.%20El%20Nino%20Southern%20Oscillation%3B%20


SONEC

Central Valley

Figure S11. Distribution of monthly Palmer drought severity index (PDSI) for Southern Oregon
and Northeast California (SONEC) and the Central Valley for 1988-2004 (P1) and 2005-20 (P2).
Significance levels between periods are shown by symbols representing significant cut points:
**** = p <0.0001, ***  = p < 0.001, ** = p <0.01, *  = p < 0.1, ns = non-significant. Boxes,
interquartile range (IQR); line dividing the box horizontally, median value; whiskers, 1.5 times
the IQR; points, potential outliers.



SONEC

Central Valley

Figure S12. Distribution of monthly precipitation for Southern Oregon and Northeast California
(SONEC) and the Central Valley for 1988-2004 (P1) and 2005-20 (P2). Significance levels
between periods are shown by symbols representing significant cut points: **** = p <0.0001,
***  = p < 0.001, ** = p <0.01,  *  = p < 0.1, ns = non-significant. Boxes, interquartile range
(IQR); line dividing the box horizontally, median value; whiskers, 1.5 times the IQR; points,
potential outliers.



SONEC

Central Valley

Figure S13. Distribution of monthly water deficit for Southern Oregon and Northeast California
(SONEC) and the Central Valley for 1988-2004 (P1) and 2005-20 (P2). Significance levels
between periods are shown by symbols representing significant cut points: **** = p <0.0001,
***  = p < 0.001, ** = p <0.01,  *  = p < 0.1, ns = non-significant. Boxes, interquartile range
(IQR); line dividing the box horizontally, median value; whiskers, 1.5 times the IQR; points,
potential outliers.



SONEC

Central Valley

Figure S14. Distribution of monthly minimum temperatures for Southern Oregon and Northeast
California (SONEC) and the Central Valley for 1988-2004 (P1) and 2005-20 (P2). Significance
levels between periods are shown by symbols representing significant cut points: **** = p
<0.0001, ***  = p < 0.001, ** = p <0.01,  *  = p < 0.1, ns = non-significant. Boxes, interquartile
range (IQR); line dividing the box horizontally, median value; whiskers, 1.5 times the IQR;
points, potential outliers.



SONEC

Central Valley

Figure S15. Distribution of monthly maximum temperatures for Southern Oregon and Northeast
California (SONEC) and the Central Valley for 1988-2004 (P1) and 2005-20 (P2). Significance
levels between periods are shown by symbols representing significant cut points: **** = p
<0.0001, ***  = p < 0.001, ** = p <0.01,  *  = p < 0.1, ns = non-significant. Boxes, interquartile
range (IQR); line dividing the box horizontally, median value; whiskers, 1.5 times the IQR;
points, potential outliers.



Supplemental Materials – Future Climate
To examine the potential future climate of the SONEC and the Central Valley regions, we used
the MACAv2-METDATA Monthly Summaries accessed in the Google Earth Engine Platform.
The dataset is statistically downscaled from global climate model output from the Coupled
Model Intercomparison Project 5 (CMIP5, Taylor et al. 2010) utilizing a modification of the
Multivariate Adaptive Constructed Analogs (MACA) approach (Abatzoglou and Brown, 2012)
with the “Livneh'' observational dataset as training data (Livneh et al., 2013). MACAAv2 has a
4-km grid-scale for historical (1950-2005) and future (2006-2100) climate metrics (maximum
and minimum temperature, humidity, precipitation, and downward shortwave radiation),
compiled for 20 global climate models. Detailed information on methods and available data can
be found at the MACA homepage (https://climate.northwestknowledge.net/MACA/index.php).

We used an ensemble of downscaled climate models to estimate variability in future
climate outcomes (Mote et al., 2011). To access both model and scenario uncertainty (Hawkins
and Sutton, 2009) we compiled data from a set of models run under two future representative
concentration pathways (RCP) RCP 4.5 and RCP 8.5.  RCP 4.5, an intermediate scenario, has
CO2-equivalent emissions peaking ~2040, then declining through 2100 (Fig. 2 in Meinshausen,
et al. 2011; https://ar5-syr.ipcc.ch/topic_futurechanges.php, Box 2.2, Figure. 1). RCP 8.5
assumes emissions steadily rise through 2100 and, although "increasingly implausible with each
passing year" (Hausfather and Peters, 2020), represents a high-emission boundary condition or
“worst-case” climate change scenario (ibid). RCP 8.5 and  RCP4.5 temperature projections are
approximately consistent with the model outcomes from the 2000 Special Report on Emission
Scenarios, respectively (Hayhoe et al., 2017), representing the potential global maximum
temperature response (~ 4-10°C by 2100) and a more moderate response ~ 2-4°C by 2100).

Although some studies suggest that projections from a random set of climate models are
similar to those of the “best” models based on comparison to historical data, we used results
from Rupp et al. (2013) to inform model selection rather than using all 20 MACAv2 models.
Rupp et al. (2013) found that for the Pacific Northwest region (which overlaps most of the
SONEC and the Central Valley regions), there was a significant difference among 41 downscaled
climate models. However, a clear set of models did a better job of reproducing historical
conditions over 18 climate metrics. This was especially true for the metrics measuring the
seasonal amplitude and inter-annual/seasonal variability of precipitation and temperature, metrics
important for understanding wetland response to climate and waterbird use of wetland systems.
Therefore we decided to use the models that overlapped between the top-20 models of Rupp et
al. and those available in MACAAv2. This resulted in a set of 7 models (Table S12).

https://paperpile.com/c/08ht8h/qK4r
https://paperpile.com/c/08ht8h/0upT
https://climate.northwestknowledge.net/MACA/index.php
https://paperpile.com/c/08ht8h/bNUR
https://paperpile.com/c/08ht8h/lVD2
https://paperpile.com/c/08ht8h/lVD2
https://ar5-syr.ipcc.ch/topic_futurechanges.php
https://paperpile.com/c/08ht8h/3qAV
https://paperpile.com/c/08ht8h/8B9i
https://paperpile.com/c/08ht8h/5Ghx/?noauthor=1
https://paperpile.com/c/08ht8h/5Ghx/?noauthor=1


Table S12. List of models used from the MACAv2 GEE dataset that are in the “best” performing
models (top ~15) of Rupp, et al. (2013).

MODEL SOURCE AGENCY

CanESM2 Canadian Center for Climate Modeling and Analysis

CCSM4 National Center of Atmospheric Research, USA

HadGEM2‐CC Met Office Hadley Center, UK

HadGEM2‐ES Met Office Hadley Center, UK

IPSL-CM5B-MR Institute Pierre Simon Laplace, France

MICROC5 Japan (three institutes)

NorESM1-M Norwegian Climate Center, Norway

Although this is a relatively small number of models for ensemble analysis
(https://climate.northwestknowledge.net/MACA/GCMselection.php), we chose this approach
because of the lower relative error of variables of interest in this set of MACAv2-available model
outcomes provides a stronger gage of variability/uncertainty of future climate projections in the
SONEC-Central Valley regions.

We extracted MACAv2 values from these seven models for the RCP 4.5 and RCP 8.5
scenarios to determine precipitation and temperature (maximum and minimum) for each water
year from the historical period from 1950-1999 and the future from 2039-2099 (three ~ 20-year
periods). Rather than using modeled actual values, we calculated and plotted future anomalies
for temperature and precipitation based on the 1950-1999 period median values (see following
Figures S16-17). The changes in three climate variables, minimum temperature (TMIN),
maximum temperature (TMAX), and precipitation (PR) in the future from this assemblage of
models are presented. In all cases, anomalies are plotted based on the historical 1950-1999
period.

https://climate.northwestknowledge.net/MACA/GCMselection.php


Figure S16. Future Southern Oregon and Northeast California (SONEC) climate projections for
historic, RCP 4.5, and RCP 8.5 emission scenarios. Estimates were derived from an ensemble of
seven downscaled climate models extracted from the MACAv2 dataset.



Figure S17. Future Central Valley climate projections for historic, RCP 4.5, and RCP 8.5
emission scenarios. Estimates were derived from an ensemble of seven downscaled climate
models extracted from the MACAv2 dataset.

We calculated a time series of the Standardized Precipitation Evapotranspiration Index
(SPEI) using MACAv2 values (Vicente-Serrano et al., 2014). The SPEI considers precipitation
(PRCP) and potential evapotranspiration (PET) in estimating drought, capturing the impact of
temperature on water demand. The SPEI also correlates well with the self-calibrating Palmer
Drought Severity Index (scPDS I) at 1-18 month timescales, the scale at which we examine
changing wetland surface areas. To estimate potential drought in the future, we used MACAv2
data as input to the R-package SPEI (Vicente-Serrano et al., 2010). We calculated PET by the
Hargreaves method (Hargreaves and Samani, 1985) and then calculated the SPEI time series
from 1950 to 2100, the time range of the MACAv2 data. We used the period just before our
surface water analysis, 1950-1985, as the reference period. SPEI was then calculated for the
complete time series using “historical”, “RCP45”, and “RCP85” scenarios in the MACAv2 data
for each region, SONEC, and the Central Valley. This resulted in four time series representing
potential future drought under an intermediate CO2-equivalent emissions scenario (RCP 4.5) and
a high-emission change scenario (RCP 8.5, Figures S18 & S19.

https://paperpile.com/c/08ht8h/t1Cz
https://paperpile.com/c/08ht8h/xE7o
https://paperpile.com/c/08ht8h/SJlI


Figure S18. Southern Oregon and Northeast California (SONEC) Standardized Precipitation
Evapotranspiration Index (SPEI) from 1950-2100 for RCP 4.5, and RCP 8.5 emissions scenarios.
Predictions derived using a  modification of the Multivariate Adaptive Constructed Analogs
approach (MACA). Reference period is shaded, 1950 -1985.



Figure S19. Central Valley (CalCV) standardized precipitation evapotranspiration index (SPEI)
from 1950-2100 for RCP 4.5, and RCP 8.5 emissions scenarios. Predictions derived using a
modification of the Multivariate Adaptive Constructed Analogs approach (MACA). Reference
period is shaded, 1950 -1985.
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