Introgressing *cry1Ac* for Pod Borer Resistance in Chickpea through Marker Assisted Backcross Breeding

Ajinder Kaur¹, Urvashi Sharma¹, Sarvjeet Singh², Ravinder Singh², Yogesh Vikal¹, Satnam Singh³, Palvi Malik¹, Khushpreet Kaur³, Inderjit Singh², Shayla Bindra², Bidyut Kumar Sarmah⁴ and Jagdeep Singh Sandhu^{1*}

¹School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India,

² Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004, India, ³Punjab Agricultural University, Regional Research Station, Faridkot, Punjab 151203, India, ⁴ Department of Biotechnology-Assam Agricultural University Centre, Assam Agricultural University, Jorhat, Assam 785013, India

* Correspondence: Jagdeep Singh Sandhu

js_sandhu@pau.edu

SUPPLEMENTARY FIGURE 1 Schematic map of transgene construct showing *cry1Ac* under the control of *Arabidopsis* SSU promoter and tobacco SSU terminator. RB is right border, LB is left border.

SUPPLEMENTARY FIGURE 2 *crylAc* expressing cultivated chickpea backcross populations grown under contained conditions during 2017-18. (A) BC_1F_3 derived from Cross B (L552 × BS 100E). (B) Closer view of BC_1F_3 plant. (C) Non-transgenic recipient parent L552. (D) Transgenic donor parent BS 100E. (E) BC_2F_2 derived from Cross C (PBG7 × BS 100E). (F) Closer view of BC_2F_2 plant. (G) Non-transgenic recipient parent PBG7.

SUPPLEMENTARY FIGURE 3 Foreground selection of BC_1F_1 population derived from Cross A (PBG7 × BS 100B) through PCR using *cry1Ac* specific primers. P₁ indicates non-transgenic recipient parent PBG7; P₂ represents transgenic donor parent BS 100B; C refers to control PCR reaction without template DNA; the numbers 1 to 130 denote BC_1F_1 plants; M represents 50 bp DNA ladder (Cat. No. DM1100, Smobio Technology, Inc., Taiwan); forty six plants, namely 4, 5, 6, 7, 8, 14, 16, 17, 18, 21, 22, 24, 27, 28, 30, 35, 36, 42, 44, 52, 59, 60, 68, 72, 73, 77, 78, 81, 83, 84, 86, 87, 88, 89, 90, 93, 97, 100, 101, 102, 105, 106, 108, 119, 121 and 122 carried *cry1Ac* gene.

SUPPLEMENTARY FIGURE 4 Foreground selection of BC_1F_1 population derived from Cross B (L552 × BS 100E) through PCR using *cry1Ac* specific primers. P₁ indicates non-transgenic recipient parent L552; P₂ represents transgenic donor parent BS 100E; C refers to control PCR reaction without template DNA; the numbers 1 to 50 denote BC_1F_1 plants; M represents 50 bp DNA ladder (Cat. No. DM1100); twenty five plants, namely 1, 2, 4, 5, 7, 8, 10, 11, 12, 15, 24, 25, 28, 31, 33, 34, 36, 40, 41, 42, 44, 45, 46, 49 and 50 carried *cry1Ac* gene.

 $M \hspace{0.1in} P_1 \hspace{0.1in} P_2 \hspace{0.1in} C \hspace{0.1in} 1 \hspace{0.1in} 2 \hspace{0.1in} 3 \hspace{0.1in} 4 \hspace{0.1in} 5 \hspace{0.1in} 6 \hspace{0.1in} 7 \hspace{0.1in} 8 \hspace{0.1in} 9 \hspace{0.1in} 10 \hspace{0.1in} 11 \hspace{0.1in} 12 \hspace{0.1in} 13 \hspace{0.1in} 14 \hspace{0.1in} 15 \hspace{0.1in} 16 \hspace{0.1in} 17 \hspace{0.1in} 18 \hspace{0.1in} 19 \hspace{0.1in} 20 \hspace{0.1in} 21 \hspace{0.1in} 22 \hspace{0.1in} 2$

SUPPLEMENTARY FIGURE 5 Bioassay of BC_1F_1 plant derived from Cross A (PBG7 × BS 100B) expressing Cry1Ac for toxicity to *H. armigera* through detached leaf method. (A) Twig from BC_1F_1 plant showing healthy leaflets and mortality of neonate larvae. Arrows point dead larvae. (B) Twig from non-transgenic recipient parent PBG7 showing damage on the leaflets and survival of larva.

SUPPLEMENTARY FIGURE 6 Foreground selection of BC_1F_2 population derived from Cross A (PBG7 × BS 100B) through PCR using *cry1Ac* specific primers. P₁ indicates non-transgenic recipient parent PBG7; P₂ represents transgenic donor parent BS 100B; C refers to control PCR reaction without template DNA; the numbers 1 to 190 denote BC_1F_2 plants; M represents 50 bp DNA ladder (Cat. No. DM1100); sixteen plants, namely 6, 8, 12, 17, 18, 38, 40, 45, 47, 51, 53, 58, 88, 89, 90 and 94 carried *cry1Ac* gene.

SUPPLEMENTARY FIGURE 7 Foreground selection of BC_1F_2 population derived from Cross B (L552 × BS 100E) through PCR using *crylAc* specific primers. P₁ refers non-transgenic recipient parent L552; P₂ indicates transgenic donor parent BS 100E; C refers to control; the numbers 1 to 17 represent BC₁F₂ plants; M denotes 50 bp DNA ladder (Cat. No. DM1100); thirteen plants, namely 1, 2, 3, 6, 8, 9, 10, 12, 13, 14, 15, 16 and 17 carried *crylAc* gene.

- M P₁ P₂ C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 M

SUPPLEMENTARY FIGURE 8 Assessment of parental polymorphism through PCR using SSR markers. Lanes 1, 2 showing polymorphism using GA 6 marker; lanes 3, 4 displaying polymorphism with TA 59; lanes 5, 6 revealing polymorphism by GA 20 marker; lanes 7, 8 exhibiting polymorphism with GAA 40 marker; lanes 9, 10 displaying polymorphism with GAA 41 marker; lanes 11, 12 revealing polymorphism by TA 146 marker; lanes 13, 14 exhibiting polymorphism with CGMM 008 marker; lanes 15, 16 showing polymorphism using CGMM 016 marker; lanes 17, 18 displaying polymorphism by CGMM 022 marker; lanes 19, 20 revealing polymorphism with TA 34 marker; lanes 21, 22 exhibiting polymorphism using TA 64 marker; lanes 23, 24 displaying polymorphism with TAASH marker. P_1 indicates non-transgenic recipient parent PBG7; P_2 represents transgenic donor parent BS 100E.

Year	Activity	Parent/Cross (Female × Male)	Seeds sown	Plants obtained		Popula		Designation		
			(Number)	(Number)	FS	ELISA	SA BS P		IB	of harvested seeds
2013-14	Seed multiplication	Male parent BS 100B	15	10	×	×	×	×	×	Transgenic
		Male parent BS 100E	15	11	×	×	×	×	×	donor parents
		Female parent PBG7	15	14	×	×	×	×	×	Non-transgenic
		Female parent L552	15	13	×	×	×	×	×	recipient parents
	Generation of crosses	PBG7 × BS 100B (55)	-	-	×	×	×	×	×	Cross A-F ₁
		$L552 \times BS \ 100E \ (35)$	-	-	×	×	×	×	×	Cross B-F ₁
		PBG7 × BS 100E (35)	-	-	×	×	×	×	×	Cross $C-F_1$
2014.15			10	-					1.573	
2014-15	Raising of F_1 plants	$Cross A-F_1$	13	7	×	×	×	х	N[/]	Cross $A-F_2$
		Cross $B-F_1$	10	7	×	×	×	×	N[/]	Cross $B-F_2$
		Cross C-F ₁	0	3	×	Х	×	X	√[3]	Cross C-F ₂
	Generation of 1 st backcross	Cross A-F ₁ × PBG7 (250)	-	-	×	×	×	×	×	Cross A-BC ₁ F ₁
		Cross $B-F_1 \times L552$ (125)	-	-	×	×	×	×	×	Cross $B-BC_1F_1$
		Cross C- $F_1 \times PBG7$ (75)	-	-	×	×	×	×	×	Cross C-BC ₁ F ₁
2015-16	Raising of BC.F.	Cross A-BC, F.	150	130	√[46]	√[13]	~	√[13]	√[13]	Cross A-BC ₁ E ₂
2015 10		Cross B-BC ₁ F ₁	55	50	$\sqrt{[25]}$	√[9]	~	√[9]	√[7]	Cross B-BC ₁ F ₂
		Cross C-BC ₁ F_1	30	18	×	×	×	√[5]	√[4]	$\frac{Cross}{C} \frac{D}{B} \frac{D}{C_1} \frac{D}{F_2}$
	Generation of 2 nd backcross	Cross C-BC ₁ $F_1 \times PBG7$ (70)	-	-	×	×	×	×	×	Cross C-BC ₂ F ₁
2016 17	Daising of PC F	Cross A DC E	280	100	1[16]					Cross A DC E
2010-17	Kaising of $BC_1\Gamma_2$	Cross B BC E	200	190	$\sqrt{10}$	×	×	× √ [0]	× √[0]	Closs A- BC_1F_3
		$CIOSS B-BC_1\Gamma_2$	30	17	v[13]	X	X	۲[۶]	v[9]	Closs D-DC ₁ P ₃
_	Raising of BC ₂ F ₁	Cross C-BC ₂ F ₁	31	31	×	×	×	×	×	Cross C-BC ₂ F ₂
2017-18	Raising of BC ₁ F ₃	Cross A-BC ₁ F ₃	210	201	×	×	×	×	×	Cross A-BC ₁ F ₄
		Cross $B-BC_1F_3$	27	26	×	Х	×	√[6]	√[2]	Cross B-BC ₁ F ₄
	Raising of BC ₂ F ₂	Cross C-BC ₂ F ₂	120	83	√[10]	×	√[10]	$\sqrt{[7]^{\Delta}}$	√[5]	Cross C-BC ₂ F ₃
2018-19	Raising of BC ₂ F ₃	Cross C-BC ₂ F ₃	128	128	√[106]	×	×	$\sqrt{[12]^{\Delta}}$	√[9]	Cross C-BC ₂ F ₄

SUPPLEMENTARY TABLE 1 Introgression of *crylAc* from pod borer resistant transgenic chickpea lines into two elite commercial cultivars through marker assisted backcross breeding.

FS, Foreground Selection; ELISA, Enzyme Linked Immunosorbent Assay; BS, Background Selection; P, Phenotype; IB, Insect Bioassay; figures in round brackets are number of pollinations attempted. Figures in square brackets are number of plants identified after analysis; $\sqrt{}$, Yes; \times , No; ^{Δ} Represents plants identified on basis of agronomic traits.

 $\label{eq:supplementary table 2} \begin{array}{l} \textbf{SUPPLEMENTARY TABLE 2} \\ \textbf{Estimation of Cry1Ac concentration in leaf tissues of BC_1F_1 populations} \\ \textbf{derived from Cross A (PBG7 \times BS 100B) and Cross B (L552 \times BS 100E) through ELISA.} \end{array}$

Crv1Ac calibrator/Leaf tissue sample		Optical density				
orgine canorator/neur assue sample	R ₁	R ₂	R ₃			
Negative control (NC)	0.05	0.05	0.05			
1.5 ppb Cry1Ac calibrator (C1)	0.45	0.45	0.45			
10 ppb Cry1Ac calibrator (C2)	1.95	1.98	1.96			
25 ppb Cry1Ac calibrator (C3)	3.50	3.56	3.53			
BC ₁ F ₁ plant number (derived from Cross A)						
4	3.98	3.99	3.99			
6	3.99	3.99	3.99			
7	3.86	3.86	3.86			
16	3.98	3.98	3.98			
17	3.99	3.99	3.99			
18	3.99	3.99	3.99			
21	3.95	3.96	3.96			
22	3.86	3.89	3.87			
24	3.97	3.96	3.97			
77	3.97	3.97	3.97			
81	3.88	3.88	3.88			
89	3.97	3.97	3.97			
90	3.79	3.78	3.79			
BS 100B	3.89	3.88	3.88			
PBG7	0.05	0.05	0.05			
BC ₁ F ₁ plant number (derived from Cross B)						
1	3.96	3.96	3.96			
2	3.95	3.95	3.95			
4	3.93	3.93	3.93			
25	3.93	3.93	3.93			
34	3.98	3.98	3.98			
36	3.96	3.96	3.96			
41	3.98	3.98	3.98			
42	3.93	3.93	3.93			
45	3.94	3.93	3.94			
BS 100E	3.98	3.96	3.97			
L552	0.05	0.05	0.05			

Step 2: Calculate subtracted values (calculate mean OD of NC and subtract it from OD of each calibrator and leaf tissue sample)

Cry1Ac calibrator/Leaf tissue sample	Su	ibtracted	values
	R ₁	\mathbf{R}_2	R ₃
NC	0	0	0
C1	0.40	0.40	0.40
C2	1.90	1.93	1.91
C3	3.45	3.51	3.48
BC ₁ F ₁ plant number (derived from Cross A)			
4	3.93	3.94	3.94
6	3.94	3.94	3.94
7	3.81	3.81	3.81
16	3.93	3.93	3.93
17	3.94	3.94	3.94
18	3.94	3.94	3.94
21	3.90	3.91	3.91
22	3.81	3.84	3.82
24	3.92	3.91	3.92
77	3.92	3.92	3.92
81	3.83	3.83	3.83
89	3.92	3.92	3.92
90	3.74	3.73	3.74
BS 100B	3.84	3.83	3.83
PBG7	0	0	0
BC ₁ F ₁ plant number (derived from Cross B)			
1	3.91	3.91	3.91
2	3.90	3.90	3.90
4	3.88	3.88	3.88
25	3.88	3.88	3.88
34	3.93	3.93	3.93
36	3.91	3.91	3.91
41	3.93	3.93	3.93
42	3.88	3.88	3.88
45	3.89	3.88	3.89
BS 100E	3.93	3.91	3.92
L552	0	0	0
			11

Step 3: Generation of linear scale graph of mean OD of each calibrator against its Cry1Ac concentration (first calculate mean OD of each calibrator C1, C2 and C3; then generate 'y' equation and R^2 based on mean ODs of calibrators; thereafter insert scatter chart in excel sheet)

Cry1Ac concentration in ppb	Mean OD
(x value)	(y value)
1.5 (C1)	0.45
10 (C2)	1.96
25 (C3)	3.53

To generate 'y' equation (y = mx + b), where m = slope and b = y intercept), select 'x' and 'y' values given in Step 3. To generate linear scale graph, insert scatter chart in Microsoft Excel sheet:

Step 4: Estimation of Cry1Ac concentration of each calibrator and leaf tissue sample was done as follows: OD value of calibrator or leaf tissue sample (value as per Step 2) - 0.425/ 0.127

Cry1Ac calibrator/ Leaf tissue sample	Cry1Ac concentration (ppb)				
	R ₁	\mathbf{R}_2	R ₃		
NC	0	0	0		
C1	0	0	0		
C2	11.61	11.85	11.69		
C3	23.82	24.29	24.05		
BC ₁ F ₁ plant number (derived from Cro	ss A)				
4	27.60	27.68	27.68		
6	27.68	27.68	27.68		
7	26.65	26.658	26.65		
16	27.60	27.60	27.60		
17	27.68	27.68	27.68		
18	27.68	27.68	27.68		
21	27.36	27.44	27.44		
22	26.65	26.89	26.74		
24	27.52	27.44	27.52		
77	27.52	27.52	27.52		
81	26.81	26.81	26.81		
89	27.52	27.52	27.52		
90	26.10	26.02	26.10		
BS 100B	26.89	26.81	26.81		
PBG7	0	0	0		
BC1F1 plant number (derived from Cros	ss B)				
1	27.44	27.44	27.44		
2	27.36	27.36	27.36		
4	27.20	27.20	27.20		
25	27.20	27.20	27.20		
34	27.60	27.60	27.60		
36	27.44	27.44	27.44		
41	27.60	27.60	27.60		
42	27.20	27.20	27.20		
45	27.28	27.20	27.28		
BS 100E	27.60	27.44	27.52		
L552	0	0	0		

Step 5: Estimation of Cry1Ac concentration in ppm or $\mu g g^{-1}$ by applying the formula: OD value (as per Step 4) × dilution factor 1 (38.46) × dilution factor 2 (11, as samples were diluted at 1:11)/ 1000

Cry1Ac	Cry1	g g ⁻¹ leaf tissue)	
calibrator/Leaf	\mathbf{R}_1	\mathbf{R}_2	\mathbf{R}_3
tissue sample			
NC	0	0	0
C1	0	0	0
C2	4.91	5.01	4.94
C3	10.08	10.28	10.17
BC ₁ F ₁ plant nun	nber (derived fr	om Cross A)	
4	11.68	11.71	11.71
6	11.71	11.71	11.71
7	11.27	11.28	11.27
16	11.68	11.68	11.68
17	11.71	11.71	11.71
18	11.71	11.71	11.71
21	11.57	11.61	11.61
22	11.27	11.38	11.31
24	11.64	11.61	11.64
77	11.64	11.64	11.64
81	11.34	11.34	11.34
89	11.64	11.64	11.64
90	11.04	11.01	11.04
BS 100B	11.38	11.34	11.34
PBG7	0	0	0
BC ₁ F ₁ plant nun	nber (derived fr	om Cross B)	
1	11.61	11.61	11.61
2	11.57	11.57	11.57
4	11.51	11.51	11.51
25	11.51	11.51	11.51
34	11.68	11.68	11.68
36	11.61	11.61	11.61
41	11.68	11.68	11.68
42	11.51	11.51	11.51
45	11.54	11.51	11.54
BS 100E	11.68	11.61	11.64
L552	0	0	0

SUPPLEMENTARY TABLE 3 SSR markers used to analyze parental polymorphism and carry out background selection of BC_2F_2 plants derived from Cross C (PBG7 × BS 100E).

S. No	Marker	Status of	Reference	Chromosomal	Reference for	PIC	Reference for PIC value
1		D	Cruiceria at al. (2011)	ocation	chromosomal location	value	
2	CGMM 001*	r M	Gujaria et al. (2011) Gujaria et al. (2011)	0	https://plantgarden.jp>list>CAPS	NA	
3	CGMM 003	M	Gujaria et al. (2011)				
4	CGMM 004	М	Gujaria et al. (2011)				
5	CGMM 005	М	Gujaria et al. (2011)				
6	CGMM 006	М	Gujaria et al. (2011)				
7	CGMM 007	М	Gujaria et al. (2011)				
8	CGMM 008	Р	Gujaria et al. (2011)	NA	https://plantgarden.jp>list>CAPS	NA	-
9	CGMM 009	M	Gujaria et al. (2011)				
10	CGMM 010	M	Gujaria et al. (2011) Guiaria et al. (2011)				
12	CGMM 012*	P	Gujaria et al. (2011)	2	Guiaria et al. (2011)	NA	
12	CGMM 012	M	Gujaria et al. (2011)	2	Gujaria et al. (2011)	1471	
14	CGMM 014	М	Gujaria et al. (2011)				
15	CGMM 015	М	Gujaria et al. (2011)				
16	CGMM 016	Р	Gujaria et al. (2011)	3	https://plantgarden.jp>list>CAPS	NA	-
17	CGMM 017	М	Gujaria et al. (2011)				
18	CGMM 018	М	Gujaria et al. (2011)				
19	CGMM 020	М	Gujaria et al. (2011)				
20	CGMM 021	M	Gujaria et al. (2011)	~	https://slagt_l_t_t_t_t_t_t_t_t_t	NT 4	
21	CGMM 022	۲ ۲	Gujaria et al. (2011)	5	nttps://plantgarden.jp>list>CAPS	NA	-
22	CGMM 023	M	Gujaria et al. (2011)				
23 24	CGMM 024 CGMM 025	M	Gujaria et al. (2011) Gujaria et al. (2011)				
24 25	CGMM 025	M	Gujaria et al. (2011) Gujaria et al. (2011)				
26	CGMM 027	M	Gujaria et al. (2011)				
27	CGMM 028	M	Gujaria et al. (2011)				
28	CGMM 029	М	Gujaria et al. (2011)				
29	CGMM 030	М	Gujaria et al. (2011)				
30	CGMM 031	М	Gujaria et al. (2011)				
31	CGMM 032	М	Gujaria et al. (2011)				
32	CGMM 033	М	Gujaria et al. (2011)				
33	CGMM 062	M	Gujaria et al. (2011)				
34	CGMM 063	M	Gujaria et al. (2011)				
35 36	CGMM 064	M	Gujaria et al. (2011) Gujaria et al. (2011)				
30	CGMM 066	M	Gujaria et al. (2011)				
38	CGMM 067	M	Gujaria et al. (2011)				
39	CGMM 068	M	Gujaria et al. (2011)				
40	CGMM 069	М	Gujaria et al. (2011)				
41	CGMM 070	М	Gujaria et al. (2011)				
42	CGMM 071	М	Gujaria et al. (2011)				
43	CGMM 072	М	Gujaria et al. (2011)				
44	CGMM 073	М	Gujaria et al. (2011)				
45	CGMM 074	M	Gujaria et al. (2011)				
46	CGMM 075	M	Gujaria et al. (2011)				
4/ 18	CGMM 077	M	Gujaria et al. (2011) Gujaria et al. (2011)				
40 49	CGMM 077	M	Gujaria et al. (2011)				
50	CGMM 138	M	Gujaria et al. (2011)				
51	CaM 0038	М	Thudi et al. (2011)				
52	CaM 0046	М	Thudi et al. (2011)				
53	CaM 0244	М	Thudi et al. (2011)				
54	CaM 0594	М	Thudi et al. (2011)				
55	CaM 0805	М	Thudi et al. (2011)				
56	CaM 1101	M	Thudi et al. (2011)	-			
57	CaM 1125*	Р	Thudi et al. (2011)	6	Thudi et al. (2011)	NA	
58 50	CaM 1502	IVI M	Thuch et al. (2011)				
59 60	CaM 1002*	M D	Thuch et al. (2011)	А	Nevel (2010)	0.52	Sachdeva et al. (2019)
61	CaM 2049	r M	Thudi et al. (2011) Thudi et al. (2011)	4	INAYAK (2010)	0.52	Sachueva et al. (2018)
62	GA 2	M	Winter et al. (1992)				
63	GA 4	М	Winter et al. (1992)				
64	GA 6	Р	Winter et al. (1992)	8	Millan et al. (2010)	0.47	Sachdeva et al. (2018)
65	GA 8*	Р	Winter et al. (1992)	NA		0.24	Vashist et al. (2019)
66	GA 9	М	Winter et al. (1992)				
67	GA 11	М	Winter et al. (1992)				
68	GA 13	М	Winter et al. (1992)				
69	GA 14	М	Winter et al. (1992)				
70	GA 17	М	Winter et al. (1992)				
71	GA 20	Р	Winter et al. (1992)	2	Millan et al. (2010)	0.49	Ghaffari et al. (2014)
72	GA 21	М	Winter et al. (1992)				

73	GA 22	М	Winter et al. (1992)				
74	GA 26*	Р	Winter et al. (1992)	6	Winter et al. (2000)	0.61	Jha et al. (2018)
75	GA 31	М	Winter et al. (1992)				
76	GA 33	М	Winter et al. (1992)				
77	GA 105	М	Winter et al. (1992)				
78	GA 108	M	Winter et al. (1992)				
79	GA 117	M	Winter et al. (1992)				
80	GA 13/	M	Winter et al. (1992)	6	N1- (2010)	0.20	Washist at al. (2010)
81	GAA 39*	P	Winter et al. (1992)	0	Nayak (2010) Winter at al. (2000)	0.30	Vasnist et al. (2019) Sofore et al. (2011)
02	GAA 40	P	winter et al. (1992)	I	winter et al. (2000)	0.37	Selera et al. (2011)
83	GAA 41	Р	Winter et al. (1992)	6	Nayak et al. (2010)	0.82	Ganguly et al. (2008
84	GAA 42	M	Winter et al. (1992)				
85	GAA 43	M	Winter et al. (1992)				
86	GAA 44	М	Winter et al. (1992)				
87	GAA 45*	Р	Winter et al. (1992)	3	Jadhav et al. (2015)	0.03	Jadhav et al. (2015)
88	GAA 46	M	Winter et al. (1992)				
09	GAA 50	M	Winter et al. (1992)				
90 01	GAA 51	M	Winter et al. (1992)				
91	GAA 58	M	Winter et al. (1992)				
03	GAA 60	M	Winter et al. (1992)				
93	GAA 129h	M	Winter et al. (1992)				
94	TA 2	M	Winter et al. (1992)				
96	TA 18	M	Winter et al (1992)				
97	TA 20	M	Winter et al. (1992)				
98	TA 25	M	Winter et al. (1992)				
99	TA 28	M	Winter et al. (1992)				
100	TA 34	Р	Winter et al. (1992)	3	Winter et al. (2000)	0.39	Choudhary et al. (2012
101	TA 36	М	Winter et al. (1992)	-			
102	TA 37	M	Winter et al. (1992)				
103	TA 43	M	Winter et al. (1992)				
104	TA 44	М	Winter et al. (1992)				
105	TA 45	М	Winter et al. (1992)				
106	TA 46	М	Winter et al. (1992)				
107	TA 47	М	Winter et al. (1992)				
108	TA 53	М	Winter et al. (1992)				
109	TA 59	Р	Winter et al. (1992)	2	Winter et al. (2000)	0.36	Choudhary et al. (2012
110	TA 64	Р	Winter et al. (1992)	3	Winter et al. (2000)	0.34	Choudhary et al. (2012
111	TA 66	М	Winter et al. (1992)				
112	TA 71	M	Winter et al. (1992)				
113	TA 72	М	Winter et al. (1992)				
114	TA 76s*	Р	Winter et al. (1992)	NA	Sefera et al. (2011)	0.57	Rizvi et al. (2013)
115	TA 78	Μ	Winter et al. (1992)				
116	TA 80	М	Winter et al. (1992)				
117	TA 87	М	Winter et al. (1992)				
118	TA 89	Μ	Winter et al. (1992)				
119	TA 93	Μ	Winter et al. (1992)				
120	TA 103	М	Winter et al. (1992)				
121	TA 104	М	Winter et al. (1992)				
122	TA 106	М	Winter et al. (1992)				
123	TA 108	М	Winter et al. (1992)				
124	TA 113	M	Winter et al. (1992)				
125	TA 114	M	Winter et al. (1992)				
126	TA 116	M	Winter et al. (1992)				
127	TA 117	M	Winter et al. (1992)				
128	1A 118 TA 127	M	Millan et al. (2010)				
129	TA 125	M	Winter et al. (1992)				
130	TA 127	M	Winter et al. (1992)				
131	1A 155	M	Winter et al. (1992)				
132	TA 130	M	Winter et al. (1992)				
133	TA 140	M	Winter et al. (1992)				
134	TA 141	M	Winter et al. (1992)				
135	TA 142	M	Winter et al. (1992) Winter et al. (1002)				
137	TA 144	P	Winter et al. (1992)	4	Winter et al. (2000)	0.72	Choudhary et al. (2017
130	TA 140	м		-	(1) mor et al. (2000)	0.72	Choudhary et al. (201)
130	TA 139	M	Winter at al. (2010)				
139 140	TA 10/	M	Winter et al. (1992) Winter et al. (1002)				
140	TA 170	M	Winter et al. (1992) Winter et al. (1002)				
142	TA 180	M	Winter et al. (1992) Winter et al. (1002)				
142	TA 186	M	Winter et al. (1992)				
144	TA 199	M	Winter et al. (1992)				
145	TA 200	M	Winter et al (1992)				
146	TA 203	M	Winter et al. (1992)				
147	TA 206	M	Winter et al. (1992)				
1/9	TAA 55	M	Winter et al. (1992)				
140							
148	TAA 57	M	Winter et al. (1992)				

151	TAA 61*	Р	Winter et al. (1992)	NA		NA	
152	TAA 104	М	Winter et al. (1992)				
153	TAA 107	М	Winter et al. (1992)				
154	TAA 137	М	Winter et al. (1992)				
155	TAA 169	М	Winter et al. (1992)				
156	TAA 194	M	Winter et al. (1992)				
157	TAASH	P	Winter et al. (1992)	5	Winter et al. (2000)	0.86	Joshi et al. (2013)
158	TS 5	M	Winter et al. (1992)	5	(1 intel et un (2000)	0.000	20011 et al. (2015)
150	TS 10	M	Winter et al. (1992)				
159	TS 10	M	Winter et al. (1992)				
161	TS 12	M	Winter et al. (1992)				
162	TS 16*	D	Winter et al. (1992)	NA		NA	
162	TS 10	r M	Winter et al. (1992)	INA		INA	
164	TS 22	M	Winter et al. (1992)				
165	TS 23	M	Winter et al. (1992)				
165	TS 20	M	Winter et al. (1992)				
167	TS 25	M	Winter et al. (1992)				
167	15 55 TE 20	M	Winter et al. (1992)				
108	15 39 TE 42	M	Winter et al. (1992)				
109	1545	M D	Winter et al. (1992)	0	Sefere et al. (2011)	0.00	Sefere et el (2011)
170	15 45* TC 47	P	Winter et al. (1992)	8	Selera et al. (2011)	0.66	Selera et al. (2011)
1/1	154/	M	Winter et al. (1992)				
172	15 52 TE 52	M	Winter et al. (1992)				
175	15 55	N	Winter et al. (1992)		N 1 (2010)	0.01	W 1 (2000)
174	15 54*	P	Winter et al. (1992)	4	Nayak (2010)	0.81	winter et al. (2000)
175	15 58	M	Winter et al. (1992)				
176	TS 72	M	Winter et al. (1992)				
177	TS 74	M	Winter et al. (1992)				
1/8	15 /9	M	Winter et al. (1992)				
1/9	15 83	M	Winter et al. (1992)				
180	TS 84	M	Winter et al. (1992)				
181	TS 104	M	Winter et al. (1992)				
182	IR I	M	Winter et al. (1992)				
183	TR 2	M	Winter et al. (1992)				
184	TR 3	M	Winter et al. (1992)				
185	IR /	M	Winter et al. (1992)				
186	IR 8	M	Winter et al. (1992)				
18/	TR 20	M	Winter et al. (1992)				
188	TR 26	M	Winter et al. (1992)				
189	TR 29	M	Winter et al. (1992)				
190	TR 31	M	Winter et al. (1992)				
191	TR 32	M	Winter et al. (1992)				
192	TR 35	M	Winter et al. (1992)				
195	TR 55	M	Winter et al. (1992)				
194	TR 40 TR 42	M	Winter et al. (1992)				
195	TR 45	M	Winter et al. (1992)				
190	1 K 44 TD 45	M	Winter et al. (1992)				
197	TR 45	M	Winter et al. (1992)				
198	TR 55	M	Winter et al. (1992)				
200	TR 50	M	Winter et al. (1992)				
200	TR 39	M	Winter et al. (1992)				
201	IK 00 NCDCD 21	M	winner et al. (1992)				
202	NCPGP 127	M	Varshnav et al. (2000)				
205	NCPGP 141	M	v arshney et al. (2014) Varshney et al. (2014)				
204	NCPGP 171	M	v arshney et al. (2014) Varshney et al. (2014)				
205	NCPGP 247	M	Varshney et al. (2014)				
200	CaSTMS 11	M	* arsinicy of al. (2014) Hüttel et al. (1000)				
207	HIII6	M	Lichtenzveig et al. (2005)				
200	H1A10	M	Lichtenzveig et al. (2005)				
209	H4G11	M	Lichtenzveig et al. (2005)				
210	110011	111	Element verg et al. (2003)				

M, Monomorphic marker; P, Polymorphic marker; markers in bold depict polymorphic markers that had high reproducibility and were used to carry out background selection; *represents polymorphic markers that had low reproducibility; NA, Not Available.

- Jadhav, A. A., Rayate, S. J., Mhase, L. B., Thudi, M., Chitikineni, A., Harer, P. N., Jadhav, A. S., Varshney, R., and Kulwal, P. (2015). Marker-trait association study for protein content in chickpea (*Cicer arietinum* L.). J. Genet. 94, https://doi.org/10.1007/s12041-015-0529-6.
- Choudhary, S., Kaur, J., Chhuneja, P., Sandhu, J. S., Singh, I., Singh, S., and Sirari, A. (2012). Assessment of genetic diversity in *kabuli* chickpea (*Cicer arietinum* L.) genotypes in relation to seed size using SSR markers. *Journal of Food Legumes* 26, 1–4.
- Ganguly, A. K., Chawla, G., Yadav, R., and Kumar, R. (2008). STMS profiling of chickpea (*Cicer arietinum*) with regards to nematode resistance. *Indian J. Nematol.* 38, 209–217.

- Ghaffari, P., Talebi, R., and Keshavarzi, F. (2014). Genetic diversity and geographical differentiation of Iranian landrace, cultivars, and exotic chickpea lines as revealed by morphological and microsatellite markers. *Physiol. Mol. Biol. Plants* 20, 225–233.
- Gujaria, N., Kumar, A., Dauthal, P., Dubey, A., Hiremath, P., Prakash, A. B., Farmer, A., Bhide, M., Shah, T., Gaur, P. M., Upadhyaya, H. D., Bhatia, S., Cook, D. R., May, G. D., and Varshney, R. K. (2011). Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (*Cicer arietinum L.*). *Theor. Appl. Genet.* 122, 1577–1589.
- Rizvi, H., Babu, B. K., and Agrawal, P. K. (2013). Molecular analysis of *kabuli* and *desi* type of Indian chickpea (*Cicer arietinum* L.) cultivars using STMS markers. J. Plant Biochem. Biotech., https://doi.org/10.1007/s13562-012-0187-1.
- Hüttel, B., Winter, P., Weising, K., Choumane, W., Weigand, F., and Kahl, G. (1999). Sequence-tagged microsatellite site markers for chickpea (*Cicer arietinum* L.). *Genome* 42, 210–217.
- Lichtenzveig, J., Scheuring, C., Dodge, J., Abbo, S., and Zhang, H. B. (2005). Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, *Cicer arietinumL. Theor. Appl. Genet.* 110, 492–510.
- Millan, T., Winter, P., Jüngling, R., Gil, J., Rubio, J., Cho, S., Cobos, M. J., Iruela, M., Rajesh, P. N., Tekeoglu, M., Kahl, G., and Muehlbauer, F. J. (2010). A consensus genetic map of chickpea (*Cicer arietinum* L.) based on 10 mapping populations. *Euphytica* 175, 175–189.
- Sethy, N. K., Shokeen, B., Edwards, K. J., and Bhatia, S. (2006). Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (*Cicer arietinum L.*). *Theor. Appl. Genet.* 112, 1416–1428.
- Nayak, S. N. (2010). Identification of QTLs and genes for drought tolerance using linkage mapping and association mapping approaches in chickpea (*Cicer arietinum* L.). Ph.D. thesis, Osmania University, Hyderabad, India.
- Nayak, S. N., Zhu, H., Varghese, N., Datta, S., Choi, H. K., Horres, R., Jüngling, R., Singh, J., Kishor, P. K., Sivaramakrishnan, S., Hoisington, D. A., Kahl, G., Winter, P., Cook, D. R., and Varshney, R. K. (2010). Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with *Medicago truncatula* genome. *Theor. Appl. Genet*. 120, 1415–1441.
- Sachdeva, S., Bharadwaj, C., Sharma, V., Patil, B. S., Soren, K. R., Roorkiwal, M., Varshney, R. K., and Bhat, K. V. (2018). Molecular and phenotypic diversity among chickpea (*Cicer arietinum*) genotypes as a function of drought tolerance. *Crop & Pasture Sci.* 69, 142–153.
- Sefera, T., Abebie, B., Gaur, P. M., Assefa, K., and Varshney, R. K. (2011). Characterisation and genetic diversity analysis of selected chickpea cultivars of nine countries using simple sequence repeat (SSR) markers. *Crop & Pasture Sci.* 62, 177–187.
- Thudi, M., Bohra, A., Nayak, S. N., et al. (2011). Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (*Cicer arietinum*). *PLoS ONE* 6, e27275.
- Jha, U. C., Jha, R., Bohra, A., Parida, S. K., Kole, P. C., Thakro, V., Singh, D., and Singh, N. P. (2018). Population structure and association analysis of heat stress relevant traits in chickpea (*Cicer arietinum L.*). 3 Biotech 8, 43.
- Varshney, R. K., Thudi, M., Nayak, S. N., et al. (2014) Genetic dissection of drought tolerance in chickpea (*Cicer arietinum* L.). *Theor. Appl. Genet*. 127, 445–462.
- Vashist, U., Boora, K. S., and Kumar, M. (2019). Evaluation of genetic diversity among chickpea (*Cicer arietinum* L.) genotypes using PCR based simple sequence repeats markers. *The Pharma Innovation Journal* 8, 182–188.
- Winter, P., Benko-Iseppon, A. M., Hüttel, B., Ratnaparkhe, M., Tullu, A., Sonnante, G., Pfaff, T., Tekeoglu, M., Santra, D., Sant, V. J., Rajesh, P. N., Kahl, G., and Muehlbauer, F. J. (2000). A linkage map of the chickpea (*Cicer arietinum* L.) genome based on recombinant inbred lines from a *C. arietinum* × *C. reticulatum* cross: localization of resistance genes for *Fusarium* wilt races 4 and 5. *Theor. Appl. Genet.* 101, 1155–1163.
- Winter, P., Pfaff, T., Udupa, S. M., Hüttel, B., Sharma, P. C., Sahi, S., Arreguin-Espinoza, R., Weigand, F., Muehlbauer, F. J., and Kahl, G. (1992). Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (*C. arietinum* L.) genome. *Mol. Gen. Genet.* 262, 90–101.
- Joshi, N., Sharma, S., Subramanian, R. B., and Rao, K. S. (2013). Genetic fingerprinting of chickpea (*Cicer arietinum* L.) germplasm using morphological and molecular markers. *Asian J. Exp. Biol. Sci.* 4, 398–405.

Marker	Plant number									
name	1	2	8	9	12	20	26	33	39	44
CGMM 008	-	А	А	А	А	А	А	А	-	А
CGMM 016	А	А	А	А	А	А	А	А	А	А
CGMM 022	А	А	А	А	А	А	А	А	А	А
GA 6	-	А	А	А	А	А	А	А	А	А
GA 20	А	А	А	А	А	А	А	А	А	А
GAA 40	А	-	А	А	-	-	-	-	-	-
GAA 41	А	А	А	А	А	А	А	А	А	А
TA 34	А	А	А	А	А	А	А	А	А	А
TA 59	А	-	А	А	А	А	-	А	А	А
TA 64	А	А	А	А	А	А	А	А	А	А
TA 146	А	-	А	А	А	А	-	А	А	А
TAASH	А	А	А	А	А	А	А	А	А	А
<i>cry1Ac</i> specific PCR primer	В	В	В	В	В	В	В	В	В	В
A (%)	90.9	90.0	92.3	92.3	91.7	91.7	90.0	91.7	90.9	91.7

SUPPLEMENTARY TABLE 4 Recurrent parent genome recovery in *cry1Ac* positive BC_2F_2 plants derived from Cross C (PBG7 × BS 100E) using polymorphic SSR markers.

'A' represents presence of allele corresponding to recurrent parent PBG7,

'B' denotes presence of allele for donor parent BS 100E.

S No	Plant	-	0		- 2 JF - F	Agron	omic trait	(Recurrent
5. 140.	number/	Dave to 50 %	Number of branches	Dave to maturity	Plant height	Number of pode	Number of seeds	100-cood woight	Biological viald	Seed vield per plant	Harvest Indev [€]	narent nhenome
	Parent	flowering	ner nlant	Days to maturity	(cm)	ner nlant	ner nlant	(g)		(g)	(%)	recovery (%)
DOE		nowering	per pluit		(em)	per plant	per plant	(5)	(5)	(5)	(70)	recovery (70)
BC_2F_2												
1	1	84 (93.33)	13 (76.47)	149 (96.13)	51.3 (86.51)	44 (73.33)	80 (70.80)	15.6 (93.97)	40.22 (77.97)	13.21 (76.36)	32.84 (97.91)	84.28
2	2	89 (98.89)	15 (88.23)	153 (98.71)	55.5 (93.59)	55 (91.67)	102 (90.26)	15.5 (93.37)	47.16 (91.43)	15.45 (89.31)	32.76 (97.67)	93.31
3	8	87 (96.67)	16 (94.12)	152 (98.06)	57.5 (96.96)	46 (76.67)	85 (75.22)	16.2 (97.59)	44.36 (86.00)	14.12 (81.62)	31.83 (94.90)	89.78
4	9	88 (97.78)	12 (70.59)	154 (99.35)	58.1 (97.98)	43 (71.67)	78 (69.03)	15.8 (95.18)	38.34 (74.33)	12.43 (71.85)	32.42 (96.66)	84.44
5	12	85 (94.44)	12 (70.59)	151 (97.42)	50.2 (84.65)	49 (81.67)	94 (83.18)	15.6 (93.97)	43.78 (84.88)	14.32 (82.77)	32.71 (97.52)	87.11
6	20	89 (98.89)	15 (88.23)	153 (98.71)	58.3 (98.31)	53 (88.33)	98 (86.72)	15.1 (90.96)	49.56 (96.08)	15.20 (87.86)	30.67 (91.44)	92.55
7	26	89 (98.89)	14 (82.35)	154 (99.35)	57.6 (97.13)	59 (98.33)	112 (99.11)	15.2 (91.57)	51.00 (98.87)	16.86 (97.46)	33.06 (97.46)	96.05
8	33	86 (95.55)	16 (94.12)	150 (96.77)	51.4 (86.68)	54 (90.00)	99 (87.61)	15.3 (92.17)	47.62 (92.32)	15.23 (88.03)	31.98 (95.35)	91.86
9	39	87 (96.67)	15 (88.23)	151 (97.42)	55.6 (93.76)	57 (95.00)	108 (95.57)	15.3 (92.17)	50.50 (97.91)	16.38 (94.68)	32.43 (96.69)	94.81
10	44	86 (95.55)	15 (88.23)	151 (97.42)	56.2 (94.77)	58 (96.67)	108 (95.57)	15.3 (92.17)	51.02 (98.91)	16.60 (95.95)	32.54 (97.02)	95.23
11	BS 100E	82	8	145	48.4	16	28	13.3	23.30	4.13	17.72	-
12	PBG7	90	17	155	59.3	60	113	16.6	51.58	17.30	33.54	-
										Average recurrent p	arent phenome reco	very - 90 94 %
DC E										riterage recarrent p	arent phenome reed	, , , , , , , , , , , , , , , , , , ,
BC21-3												
1	2-1	88	14	151	57.5	51	98	15.2	41.14	13.45	32.69	
2	2-2	88	13	150	54.6	48	94	15.6	46.20	13.23	28.64	
3	2-3	89	15	151	55.0	53	101	15.3	45.67	15.28	33.46	
	Mean \pm SD	88.33 ± 0.58	14.00 ± 1.00	150.67 ± 0.58	55.70 ± 1.58	50.67 ± 2.52	97.67 ± 3.51	15.36 ± 0.21	44.34 ± 2.78	13.99 ± 1.12	31.59 ± 2.59	_
4	8-1	85	15	151	55.5	42	77	16.0	43.66	14.42	33.05	
5	8-2	87	16	153	58.6	45	86	15.7	41.20	14.10	34.22	
6	8-3	86	17	151	53.3	46	87	15.8	47.35	14.32	30.24	
	Mean \pm SD	86.00 ± 1.00	16.00 ± 1.00	151.67 ± 1.15	55.80 ± 2.66	44.33 ± 2.08	83.33 ± 5.51	15.83 ± 0.15	44.07 ± 3.09	14.28 ± 0.16	32.50 ± 2.04	_
7	20-1	88	16	155	55.3	54	99	15.6	50.56	15.20	30.06	
8	20-2	86	15	154	57.4	55	100	14.8	51.23	15.51	30.27	
9	20-3	88	16	154	59.7	52	98	15.7	54.45	16.20	29.75	
	Mean \pm SD	87.33 ± 1.15	15.67 ± 0.58	154.30 ± 0.58	57.47 ± 2.20	53.67 ± 1.53	99.00 ± 1.00	15.37 ± 0.49	52.08 ± 2.08	15.64 ± 0.51	30.03 ± 0.26	_
10	26-1	88	14	152	55.6	57	116	15.5	55.58	17.25	31.04	
11	26-2	89	13	151	58.5	51	107	15.1	52.34	16.45	31.43	
12	26-3	90	14	153	60.3	54	110	14.8	48.46	15.30	31.57	
	Mean \pm SD	89.00 ± 1.00	13.67 ± 0.58	152.00 ± 0.27	58.13 ± 2.37	54.00 ± 3.00	111.00 ± 4.58	15.13 ± 0.35	52.13 ± 3.56	15.33 ± 0.98	31.35 ± 0.27	_
13	33-1	88	14	152	59.3	47	84	15.3	42.30	13.10	30.97	
14	33-2	86	13	154	51.2	41	76	15.7	38.75	12.65	32.65	
15	33-3	86	15	152	55.4	44	78	15.8	37.20	12.90	34.68	
	Mean \pm SD	86.67 ± 1.53	14.00 ± 1.00	152.67 ± 1.15	55.30 ± 4.05	44.00 ± 3.00	79.33 ± 4.16	15.60 ± 0.26	39.42 ± 2.61	12.88 ± 0.22	32.77 ± 1.86	
16	39-1	85	14	152	57.4	51	97	15.8	47.40	15.11	31.88	-
17	39-2	87	16	151	52.3	59	112	14.5	50.22	16.35	32.56	
18	39-3	88	16	154	51.6	55	102	15.4	47.45	15.76	33.21	
	Mean \pm SD	86.67 ± 1.53	15.33 ± 1.15	152.33 ± 1.53	53.76 ± 3.16	55.00 ± 4.00	103.67 ± 7.64	15.23 ± 0.66	48.36 ± 1.61	15.74 ± 0.62	32.55 ± 0.66	
19	44-1	88	14	151	59.3	51	96	15.8	44.50	14.78	33.21	-
20	44-2	85	13	151	55.3	58	110	14.7	46.54	15.40	33.09	
21	44-3	86	15	150	56.5	52	102	15.2	44.56	14.34	32.18	
	Mean \pm SD	86.33 ± 1.53	14.00 ± 1.00	150.67 ± 0.58	57.03 ± 2.05	53.67 ± 3.78	102.67 ± 7.02	15.23 ± 0.55	45.20 ± 1.16	14.84 ± 0.53	32.83 ± 0.56	
22	BS 100E-1	81	9	147	49.4	17	29	13.6	24.55	4.55	18.53	-
23	BS 100E-2	83	7	146	45.3	13	22	12.9	22.14	4.12	18.61	
24	BS 100E-3	83	9	148	44.8	14	25	13.7	21.45	4.22	19.67	
	Mean + SD	82.33 + 1.15	8.33 + 1.15	147.00 ± 1.00	46.50 + 2.52	14.67 ± 2.08	25.33 + 3.51	13.40 ± 0.43	22.71 ± 1.63	4.29 ± 0.22	18.94 ± 0.64	
25	PBG7-1	88	16	153	59.3	58	114	15.9	51 44	16.5	32.08	-
25	PBG7-2	89	17	154	54.5	54	107	16.2	47.62	15.4	32.00	
20	PBG7-3	88	16	155	57.6	57	100	15.2	49.55	15.8	31 89	
21	Mean + SD	88.33 + 0.58	16.33 ± 0.58	154.00 ± 1.00	57.13 + 2.43	54.67 + 3.05	107.00 + 7.00	15.93 ± 0.25	49.54 + 1.91	15.9 ± 0.56	32.10 ± 0.22	
			10.00 = 0.00			2 = 2.00			· · · · · · · · · · · · · · · · · · ·		22.10 2 0.22	

SUPPLEMENTARY TABLE 5 Agronomic traits of BC_2F_2 and BC_2F_3 populations derived from Cross C (PBG7 × BS 100E).

Data on BC_2F_2 population are presented for plants analyzed for recurrent parent genome recovery; data on BC_2F_3 population are based on three plants phenotypically similar to PBG7 and presented as mean \pm SD; figures in parentheses are recurrent parent recovery percentages for agronomic traits calculated as plant trait value/value of PBG 7 for that trait \times 100; ⁶ Harvest Index = Seed yield per plant/Biological yield \times 100.