
Supplementary Material

1 IMAGE GENERATION PROCESS
The instantiation of templates onto a single image frame for constructing the images used for crowdsourcing
tasks is specified with six adjustable parameters: density, scale, color, transparency, rotation, and target
object. Each of these parameters is described in the following paragraphs.

Figure S1: Example images generated by varying parameters
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• Density: The center points of instantiated templates are set using a Poisson-disk distribution. This
distribution produces closely packed individual points while maintaining a specified pixel distance,
r. An example of the placement of dots for four increasing settings of r (by decreasing density) on
a 1, 000 × 1, 000 pixel background is shown in Figure S1a. Once the dots are placed, the selected
templates are inserted into the image to substitute them.

• Scale: The scale parameter, s, is defined on the interval [0, 1] and is randomly drawn from a triangular
distribution T (a, b, c). This parameter specifies the relative size of the templates within an image, i.e.,
the ratio of the height of the object/shape template to the background. Figure S1b displays three images
generated by increasing the value of s; the larger s is, the more cluttered the generated image becomes.

• Color: The colors of the instantiated templates are set using RGB channels (red, green, and blue)
where each channel is encoded as a number between 0 and 255; a specific combination of these values
generates a unique color. Each instantiated object is assigned a single color. The RGB channel values
are uniformly sampled from a restricted range, as specified by the distributions U(aR, bR), U(aG, bG),
U(aB, bB), where a and b are lower and upper bounds, respectively. Figure S1c displays an example
of two color distributions. Alternatively, the color of an instantiated object can be randomly selected
from a discrete set of RGB tuples.

• Transparency: The transparency value of a template, α, is drawn from a discrete uniform distribution
U(a, b). The parameter α is a number between 0 and 255, where smaller (larger, resp.) values are more
transparent (opaque, resp.). Figure S1d displays four images generated with decreasing values of α.

• Rotation: The relative rotation, in degrees, of individual templates for an image is chosen by sampling
from a uniform distribution U(a, b).

• Target Object: When the image contains a specified target object, all templates of the same class are
removed from the normal generation process. The target object template is used in place of a single
random template to ensure it is present only once on the image frame.

2 EXPERIMENT IMAGES
This section will provide additional details on the images images used in the featured studies.

Images across all experiments were generated with a 1, 080 × 1, 080 pixel beige background (RGB
values (245, 245, 220)). The rotation of all object templates follows the uniform distribution U(0, 360).
The remaining parameters are specific to each experiment. In experiment sets C and D we use images from
four difficulty levels; “very difficult”, “difficult”, “average”, and “easy”, with densities 90, 100, 115, and
150 respectively. See Table S1.

3 TRADITIONAL VOTING METHODS
This section provides a brief overview of three traditional voting methods: Majority Voting, Confidence
Weighted Majority Voting, and Surprisingly Popular Voting. Each of these methods uses a different input
format and/or multiple inputs for the classification task.

• Majority Voting (MV): Majority Voting is the most widely used aggregation method due to its
computational simplicity. Recall that in the featured experiments each participant’s binary choice
answer can be either 0 or 1. Therefore in this study, for an image ik, the binary choice value that
receives the highest number of votes is selected as the final label when MV is used. This label can be
written as

y∗k = argmax
l∈{0,1}

∑
pj∈P (ik)

1(ljk = l),
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Sets C and D Examples Positive Negative

Very Difficult
Density: 90
Scale: T (0.25, 0.35, 0.40)
Color:
- (31, 28, 28)
- (20, 92, 163)
- (89, 135, 28)
- (196, 130, 23)
Transparency: U(150, 200)
Bat Location: Bottom, center

Difficult
Density: 100
Scale: T (0.25, 0.35, 0.40)
Color:
- (31, 28, 28)
- (20, 92, 163)
- (89, 135, 28)
- (196, 130, 23)
Transparency: U(150, 200)
Bat Location: Top, left

Average
Density: 115
Scale: T (0.25, 0.35, 0.40)
Color:
- (31, 28, 28)
- (20, 92, 163)
- (89, 135, 28)
- (196, 130, 23)
Transparency: U(150, 200)
Bat Location: Bottom, left

Easy
Density: 150
Scale: T (0.25, 0.35, 0.40)
Color:
- (31, 28, 28)
- (20, 92, 163)
- (89, 135, 28)
- (196, 130, 23)
Bat Location: Center

Table S1. Experiment Sets C and D sample images
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where 1(.) is an indicator function, which is equal to 1 whenever the given argument inside the bracket
is true, and it is equal to 0 otherwise.

• Confidence Weighted Majority Voting (CWMV): An implicit assumption of Majority Voting is
that participants within a crowdsourcing platform are equally reliable and, therefore, their provided
labels should have equal weights in the aggregate outcome. This convention is not always ideal,
specially in the presence of noisy and indecisive labelers. Previous research has found that participants
can accurately assess their individual confidence in their independently formed decisions (e.g., see
(Meyen et al., 2021)). We devise an intuitive aggregation approach that leverages this insight by
weighing participants’ labels according to their self-reported confidence values. More weight is given
to participants who are more confident about their answers, and the final label of the image is chosen
as the response whose summed confidence values is highest.

In brief the predicted label of image ik using this aggregation method can be written as

y∗k = argmax
l∈{0,1}

∑
pj∈P (ik)

cj∗k 1(ljk = l).

• Surprisingly Popular Voting (SPV): The Surprisingly Popular Voting method leverages the idea that
for some domain-specific questions where the majority of the crowd is highly inaccurate, participants
who are accurate but are in the minority may also know that their response is rare (Rutchick et al.,
2020). For a given question, the SPV method takes into account two groups of participants: Participants
who agree on a label, and participants who think the given label will be the choice provided by the
majority. The label that maximizes the difference between these two groups is selected as the final
label. The predicted label of image ik using this method can be written as

y∗k = argmax
l∈{0,1}

∑
pj∈P (ik)

[
1(ljk = l)− 1(gjk = l)

]
.

4 DISTRIBUTION OF PARTICIPANTS’ RESPONSE TIME
This section analyzes the relationship between the average response time of the participants (i.e., the time
it took to complete the task) and the accuracy of their responses. The accuracy value of each participant,
acci ∈ {0.0, 0.1, ...., 0.9, 1.0} is calculated as the ratio of their correct responses over the total number of
labeling tasks completed by the individual. To simplify the graphs, the accuracy values are rounded to
one decimal place. Similar to Christoforou et al. (2021), the Empirical Cumulative Distribution Function
(ECDF) of the different accuracy groups (i.e., set of participants with similar accuracy values) are plotted
against the average response times (in Figure S2) to analyze this relationship for each Experiment Set. The
ECDF is computed using the Kaplan-Meier estimate. Note that the graphs are constructed after removing
the 35 participants identified as insincere using Criteria 2.

From Figure S2, it is clear that only a very small fraction of the participants took less than 10 seconds
to complete the tasks, on an average, and that the accuracy of those participants was lower. Specifically,
the three participants with an average response time of less than 10 seconds had an accuracy of 0.4 in
Experiment Set A. Participants with high accuracy (> 0.6) took more than 20 seconds, on average, to
complete each labeling task. This observation serves to justify the imposition of the 10-second rule in
Criteria 1 for filtering insincere participants. Among the 321 participants used in this analysis, only two
participants utilized the complete 60 seconds for each task (both for the imbalanced datasets); their accuracy
value was relatively low (< 0.6).
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Figure S2: The Empirical CDF of the average response times

Figure S3: Validation accuracy vs. Training set size
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5 RESNET-50 ARCHITECTURE AND PERFORMANCE
The original ResNet-50 architecture (He et al., 2015a) was trained on the ImageNet (Russakovsky et al.,
2014) dataset, which consists of 1.28 million images and 1,000 different classes. We modified the fully
connected layers of the standard architecture to make it compatible with the binary classification task. We
used the Adam optimizer (Kingma and Ba, 2014) with default parameters (learning rate = 10−3, β1 = 0.99,
β2 = 0.999) and He’s method (He et al., 2015b) to initialize the weights.

Due to length considerations, the figure showing accuracy as a function of the training set size for the
automated ResNet-50 classifier are presented in the Supplementary Materials, and only the key points are
summarized herein. The largest training set size of 90k samples led to more than 95% accuracy on the
balanced validation set (consisting of 5k positive and 5k negative samples). However, when trained on the
smallest training set of 10k samples, the model performed only slightly better than random guessing. This
confirms that deep learning models almost always benefit from large datasets, given that the network has
enough parameters to capture the learnable features.

Layer Name Output Size Layers

conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 maxpool, stride 2 1×1, 64
3×3, 64

1×1, 256

×3

conv3 x 28×28

 1×1, 128
3×3, 128
1×1, 512

×4

conv4 x 14×14

 1×1, 256
3×3, 256
1×1, 1024

×6

conv5 x 7×7

 1×1, 512
3×3, 512
1×1, 2048

×3

fc1 1024×1 dropout, 2048-d fc, relu

fc2 256×1 dropout, 1024-d fc, relu

fc3 128×1 dropout, 256-d fc, relu

fc4 1×1 dropout, 128-d fc
Table S2. Modified version of the ResNet-50 architecture diagram
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