

Supplementary Material

1 Supplementary Notes

1.1 Appendix: Methods

Below, we summarize the equations describing our two-compartment neuron model and synaptic learning rule. The details of the derivations were shown in the supplementary materials of the previous study (Asabuki and Fukai, 2020).

Two-compartment neuron model

The dendritic membrane potential of a two-compartment neuron obeys

$$v(t) = \sum_{j} w_{j} e_{j}(t), \qquad (1)$$

where w_j and e_j stand for the synaptic weight and the unit postsynaptic potential of the j-th presynaptic input. The somatic activity evolves as

$$\dot{u}(t) = -\frac{1}{\tau}u(t) + g_{\rm D}[-u(t) + v(t)] - \sum_{j} G_k \phi^{\rm som}(u_k(t)) / \phi_0, \quad (2)$$

where $\tau = 15$ ms and the conductance between the two compartments is $g_D = 0.7$. The last term describes lateral inhibition with modifiable synaptic weights $G_k \ (\geq 0)$, as shown later. The soma generates a Poisson spike train with the instantaneous firing rate $\phi^{\text{som}}(u(t))$, where

$$\phi^{\text{som}}(u_i) = \phi_0 [1 + \exp(\beta(-u + \theta))]^{-1},$$
 (3)

and the parameters β and θ are modified in an activity-dependent manner in terms of the mean $\mu(t)$ and variance $\sigma(t)$ of the membrane potential over a sufficiently long period t_0 :

$$\beta = \sigma(t)^{-1}\beta_0, \qquad (4)$$

$$\theta = \mu(t) + \sigma(t)\theta_0, \quad (5)$$

$$\mu(t) = \frac{1}{t_0} \int_{t-t_0}^t u(t') dt', \qquad (6)$$

$$\sigma(t) = \sqrt{\frac{1}{t_0} \int_{t-t_0}^t u(t')^2 dt' - \mu(t)^2}.$$
 (7)

This online modification of the somatic response function maintains the dynamic range of output firing rate within a range adequate for learning. We set $\beta_0 = 5$ throughout this study, $\phi_0 = 1$ and $\theta_0 = 0.5$.

Sensory information given to the network is encoded into Poisson spike trains of input neuron $i \in \{1, 2, ..., N_{in}\}$ as

$$X_{i}(t) = \sum_{q} \delta(t - t_{i,q}), \qquad (8)$$

where δ is the Dirac' delta function and $t_{i,q}$ denotes the time of the q-th spike of neuron i. The presynaptic spikes induce the following synaptic current $I_i(t)$:

$$\tau_{\rm syn}\dot{I}_i = -I_i + \frac{1}{\tau}X_i,\qquad(9)$$

where the synaptic time constant $\tau_{syn} = 5$ ms. The synaptic currents in turn evoke a postsynaptic potential $e_i(t)$ as

$$\dot{e}_i = -\frac{e_i}{\tau} + e_0 I_i, \qquad (10)$$

with the unit amplitude given as $e_0 = 25$.

Excitatory plasticity

To extract the repeated patterns from temporal input, the neuron model minimizes the following cost function, which represents the averaged KL-divergence between somatic activity and dendritic activity:

$$E(\mathbf{w}) = \int_{\Omega_{\mathbf{X}}} dX P^*(\mathbf{X}) \int_0^T dt \sum_i D_{\mathrm{KL}} [\phi_i^{\mathrm{som}}(u_i(t;\mathbf{X})) \| \phi^{\mathrm{dend}}(v_i^*(t;\mathbf{X}))], \quad (11)$$

with $P^*(\mathbf{X})$ and $\Omega_{\mathbf{X}}$ being the true distribution of input spike trains and the entire space spanned by them, and $\phi^{\text{dend}}(x) = \phi_0 [1 + \exp(\beta_0 (-x + \theta_0))]^{-1}$. The sum runs over different neurons if multiple two-compartmental neurons exist in the network. Finally, minimizing the cost function and introducing the regularization term $-\gamma \mathbf{w}_i$ and a noise component ξ_i give the following learning rule:

$$\dot{\mathbf{w}}_{i}(t) = \eta \left\{ \psi (v_{i}^{*}(t)) \left[\left\{ f(\phi_{i}^{\text{som}} + \phi_{0}g\xi_{i}) - \phi^{\text{dend}}(v_{i}^{*}(t)) \right\} / \phi_{0} \right] \mathbf{e}(t) - \gamma \mathbf{w}_{i} \right\},$$
(12)

where $\mathbf{w}_i = [w_{i1}, \dots, w_{iN_{in}}]$ and ξ_i obeys a normal distribution. The function $\psi(x)$ and f are defined as follows:

$$\psi(x) = \frac{d}{dx} \log\left(\phi^{\text{dend}}(x)\right),\tag{13}$$

$$f(x) = \begin{cases} 0 & x < 0\\ x & 0 \le x < \phi_0, \\ \phi_0 & x \ge \phi_0 \end{cases}$$
(14)

In Equation (12), the learning rate $\eta = 5 \cdot 10^{-6}$, and the strength of regularization and that of noise were set as $\gamma = 0.5$ and g = 0.1, respectively. Note that a smaller value was used for g compared to the previous model.

Inhibitory plasticity

If a pair of presynaptic and postsynaptic spikes occur at the times t_{pre} and t_{post} , respectively, lateral inhibitory connections between two-compartment neurons *i* and *j* were modified through a symmetric anti-Hebbian STDP as

$$\Delta G_{ij} = C_{\rm p} \exp\left(-\frac{\left|t_{\rm pre} - t_{\rm post}\right|}{\tau_{\rm p}}\right) - C_{\rm d} \exp\left(-\frac{\left|t_{\rm pre} - t_{\rm post}\right|}{\tau_{\rm d}}\right), \qquad (15)$$

where $\tau_p = 40 \text{ ms}$, $\tau_d = 20 \text{ ms}$, $C_p = 0.00525 \text{ and } C_d = 0.0105$. Inhibitory weights G_{ij} were modified between zero and an upper bound $G_{\text{max}} (\propto 1/\sqrt{N_{\text{out}}})$.

2 Supplementary Figures and Tables

2.1 Supplementary Figures

Supplementary Figure 1. Results for Experiment 1 run with different numbers of output neurons (N) and different connectivity probabilities (p).

Supplementary Figure 2. (A) Results for Experiment 1 using during inference only the correct and incorrect probes related to the target sound. (B) Reference results from the human listeners' experiment.

Supplementary Figure 3. (A) Results for Experiments 2 and 3 using during inference only the correct and incorrect probes related to the target sound. (B) Reference results from the human listeners' experiment.