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Supplementary Material

1 Supplementary Notes

1.1 Appendix: Methods

Below, we summarize the equations describing our two-compartment neuron model and synaptic
learning rule. The details of the derivations were shown in the supplementary materials of the previous
study (Asabuki and Fukai, 2020).

Two-compartment neuron model

The dendritic membrane potential of a two-compartment neuron obeys
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where w; and e; stand for the synaptic weight and the unit postsynaptic potential of the j-th presynaptic
input. The somatic activity evolvesas
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where T =15 ms and the conductance between the two compartments is gp = 0.7. The last term
describes lateral inhibition with modifiable synaptic weights G, (= 0), as shown later. The soma

generates a Poisson spike train with the instantaneous firing rate ¢5°™ (u(t)), where

%M () = po[1 + exp(Bl—u+ )], 3

and the parameters fand 6 are modified in an activity-dependent manner in terms of the mean u(t)
and variance o(t) of the membrane potential over a sufficiently long period t:
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This online modificationof the somatic response function maintains the dynamic range of outputfiring
rate within a range adequate for learning. We set 8, = 5 throughout this study, ¢, = 1and 6, = 0.5.

Sensory information given to the network is encoded into Poisson spike trains of input neuroni €
{1,2, ...,N;,} as

X;(6) = Z6(t —tig),  (®
q

where § is the Dirac’ delta function and t;, denotes the time of the g-th spike of neuron i. The
presynaptic spikesinduce the following synaptic current I;(t):

1
TSani = _Ii +;Xi' (9)

where the synaptic time constant 7g,, = 5 ms. The synaptic currents in turn evoke a postsynaptic
potential e; (t) as

e.
é; = —?l + eol;, (10)

with the unit amplitude given as ey = 25.

Excitatory plasticity

To extract the repeated patterns from temporal input, the neuron model minimizes the following cost
function, which represents the averaged KL-divergence between somatic activity and dendritic
activity:

T
E(w) = fﬂ dXP*(X) fo dtz DiL[#f°™ (w6 X)) [|pdend(v/(6;X))], (11

with P*(X) and 2y being the true distribution of input spike trains and the entire space spanned by

them, and ¢pdend(x) = ¢y [1 + exp(By(—x + 6,))] . The sum runsover differentneurons if multiple

two-compartmental neurons existin the network. Finally, minimizingthe costfunctionand introducing
the regularization term - yw; and a noise component ¢; give the following learning rule:

w; () =1 {W( O){F @™ + pogéi) — pdend(v7 (1))} pole® —yw},  (12)

where w; = [Wil:"' WiNm] and &; obeys a normal distribution. The function y(x) and f are defined as
follows:



d
P() = ——log(p4en(x)), (13)
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In Equation (12), the learning rate n = 5- 10~°, and the strength of regularization and that of noise
were setas y = 0.5 and g = 0.1, respectively. Note that a smaller value was used for g compared to
the previous model.

Inhibitory plasticity

If a pair of presynaptic and postsynaptic spikes occur at the times ¢, and tps, respectively, lateral

inhibitory connections between two-compartment neurons i and j were modified through a symmetric
anti-Hebbian STDP as

tpre — t tpre — t
AG; = Cyexp <——| B p"“') — Cqexp <——| B p"“'), (15)
Tp Tq

where 7, = 40 ms, 74 = 20 ms, C, = 0.00525 and C4 = 0.0105. Inhibitory weights G;; were
modified between zero and an upper bound Gpax (X 1/4/Ngyo)-
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2 Supplementary Figures and Tables

2.1 Supplementary Figures
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Supplementary Figure 1. Results for Experiment 1 run with different numbers of output neurons
(N) and different connectivity probabilities (p).
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Supplementary Figure 2. (A) Results for Experiment 1 using during inference only the correct and
incorrect probes related to the target sound. (B) Reference results from the human listeners’

experiment.
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Supplementary Figure 3. (A) Results for Experiments 2 and 3 using during inference only the
correctand incorrect probes related to the target sound. (B) Reference results from the human
listeners’ experiment.



