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Appendix 1 Further examples 

 1. Trend analysis and other contrasts. Parris and Dienes (2013) investigated whether 

the strength of a perceptual response (measured in milliseconds) to an imaginative suggestion 

in a non-hypnotic context varied with hypnotisability (measured on a 0 to 12 scale). Hypnosis 

researchers often call people scoring 0-3 as lows, 4-7 as mediums, and 8-12 as highs.  Parris 

and Dienes recruited an equal number of lows, mediums and highs. A key question is the 

shape of the relation between hypnotisability and performance on the non-hypnotic task. On 

the one hand, it could be simply linear. On the other hand, it may be that highs are an unusual 

group, with mediums performing the same as lows; or that lows are an unusual group with 

mediums performing the same as highs (a question posed by Kirsch, 2011). The question can 

be answered by whether, in addition to a linear effect of hypnotisability on the task, there is a 

quadratic effect. Parris and Dienes regressed performance (in milliseconds) on 

hypnotisability (as a 0-12 scale) and obtained a raw slope of  b =  6 milliseconds/unit 

hypnotisability, t(33) = 2.261, p = .030. To obtain the quadratic effect, the hypnotisability 

score was squared and centred on zero.  Performance was regressed on both hypnotisability 

and hypnotisability squared. The slope for the quadratic effect was b = .530 milliseconds/unit 

hypnotisability2, t(33) = .589, p  = 0.56. Does the non-significant quadratic effect indicate 

that performance varies only linearly with hypnotisability? 

 The maximum plausible score of mediums is that of highs; thus, the minimum 

plausible quadratic effect would occur when mediums scored the same as highs, with lows 

scoring differently as a special group. Conversely, the maximum plausible quadratic effect 

would occur when mediums scored the same as lows, with highs scoring differently as a 

special group. To determine values for these extremes, first the mean performance for highs 

was found, and this mean set as the same performance for all mediums and highs; similarly, 

the mean for lows was set as the performance for all lows. This defined an idealized set of 

population values that were extreme in degree of quadratic effect. With this set of values 

treated as real data, the mean quadratic regression slope was  - 0.673.  Similarly, another 

hypothetical set of population vales was obtained by setting the mean of the lows as the same 

score for all lows and mediums; the highs all had the mean of the highs. With these values 

treated as data, the mean quadratic regression slope was 0.908.  Thus, a Bayes factor can be 

determined assuming a uniform from -0.673 to +0.908. The mean for the data (i.e. in this case, 

the quadratic slope) is .53. It has a standard error of .53/.589 = 0.9.  This gives a Bayes factor 

of 0.97. That is, the data were insensitive and provide no evidence either for or against the 

quadratic hypothesis. It would be wrong to use the non-significant quadratic effect to infer 

that mediums lay mid-way between highs and lows. 

 The principle for constructing limits for a uniform can be generalized. For a contrast, 

use values of the dependent variable in each condition that would represent extremes which 

are plausible given the scientific context. Coefficients found using the hypothetical scores as 

real data determine the plausible extremes of the contrast and can be used in a uniform to 

represent the alternative.  

2. Equating one variable to test the effect of another.  Song, Maniscalco, Koizumi, 

and Lau (2013) wished to investigate the function of confidence when performance was 

controlled.  Thus, they found a way to create stimuli for which performance (d’) was 

calibrated to be similar and yet confidence differed. We will call this performance single task 

d’ (for reasons that will become clear) . (In what follows the numbers have been made up, so 

as not to jeopardise the publication of the authors’ paper.) On a 1-4 confidence scale, the 

confidence for the two conditions was 2.21 and 2.41, t(35) =  4.04, p = .0001. The 
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corresponding single task d’s for the two conditions were 1.83 and 1.93, t(35) = 0.96, p = 

0.34. The question is, can equivalence be claimed for single task d’ across the two conditions? 

 To allow comparability between confidence and single task d’, standardized effect 

sizes might seem useful. Then, it could be argued, the sort of effect size we might expect to 

see in single task d’, if there were an effect, would be in the same ball park as the 

standardized effect size found for confidence. We will use Pearson’s r as a standardized 

effect size, where r2 = t2/( t2 + df). Thus, for confidence r = √ (4.042/(35 + 4.042)) = .56; and 

for d’, r = √ (0.962/(35 + 0.962)) = .16. Pearson’s r can be transformed to a normal variable 

with Fishers z  =  0.5*loge((1 + r)/(1 - r)), which has standard error= 1/√ (df -1).  Thus, 

Fisher’s z for confidence = 0.64, and for d’ Fisher’s z = 0.16.  The standard error for the 

Fisher’s z for d’ is 0.17.  Thus, a Bayes factor can be determined for a mean of 0.16, SE = 

0.17, and with the alternative represented as a half-normal with standard deviation equal to 

0.64. In this case, B = 0.64.  That is, the data appear insensitive for establishing equivalence 

as B is between 3 and 1/3. 

 However, the use of standardized effect sizes in this context doesn’t address the 

question of interest. A standardized effect size reflects the consistency with which an effect is 

shown, and thus how noisily it is measured (Baguley, 2009).  One could make the 

measurement of performance noisy simply by using few trials. (Theoretically irrelevant 

differences in noise between measures occur for reasons other than just number of trials. 

Some measures are simply noisier than others: For example, confidence has a restricted range, 

d’ an unrestricted range.) By using a sufficiently small number of trials for performance, the 

population r for the difference between conditions in single task d’ could be made very small. 

If confidence was measured on a different large number of trials, its population r could be 

made large. That is,  a researcher making the measure of single task d’ as insensitive as 

possible would help establish equivalence in single task d’ between conditions. This is also 

true for testing equivalence merely by showing a non-significant result. That is, both 

significance testing and Bayes using standardized effect sizes, do not address the real issue, in 

this case, because they are sensitive to factors that are theoretically irrelevant (and could 

therefore be cynically manipulated by the experimenter). To address the actual theoretical 

concerns of the researchers, raw effect sizes should be used. 

 But, how can one use a difference in confidence units to set a difference in d’ units? 

The researchers were interested in the extent to which confidence predicted a third outcome 

variable, specifically, discrimination on a task that involved integrating over many stimuli. 

Call this multi-task d’. That is, the most important issue was given that the difference in 

confidence was associated with a change in multi-task d’, could the difference in single task 

d’s be large enough to explain the change in multi-task d’? Given this theoretical agenda, we 

can calibrate confidence and single task d’ in the following way.   The difference in 

confidence was associated with a significant difference in multi-task d’ in their experiment 

(in fact, this was the main result of the study). Let us say multi-task d’ differed by 0.6 units. 

So, let us say the researchers run another study in which single task d’ was allowed to vary 

over a range from say 1.5 to 2.5, and multi-task d’ was measured.  Regress single task d’ on 

multi-task d’. Let us say the raw regression slope is 1.5 single d’ units/multi d’ units. Thus, 

the change in single task d’ that corresponds to 0.6 units change in multi-task d’ is 1.5*0.6 = 

0.9. Now, we can use that estimated relevant change in single task d’ as the SD of a half-

normal to represent a meaningful alternative to contrast with the null hypothesis of no 

difference in single task d’.  For the Bayes factor calculator, the “mean” is 1.93-1.83 = 0.10 

single task d’ units, the standard error is 0.10/0.96 = 0.10 single task d’ units, and we can use 
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a half-normal with an SD of 0.90 single task d’ units.  In this case, B = 0.31, indicating we 

can sensitively accept the claim of equivalence.  

This method finds the raw difference in d’ in a non-arbitrary way relevant to the 

scientific context. Further, there is no clear incentive to measure single task d’ insensitively. 

Making the measurement of single task d’ noisier (in an unbiased way) does not affect the 

expected raw regression slope of single task d’ against multi task d’. It just makes it harder to 

make sensitive claims when the Bayes factor on single task d’ is performed. (And making the 

measurement of multi-task d’ insensitive will reduce the slope, making equivalence claims 

harder.) A correct analysis and inference procedure will never be harmed by making data 

more sensitive. 

Now let’s consider another possible method . Without knowledge of the slope of 

single task d’ against multi task d’, one could calibrate raw effect sizes by regressing single 

task d’ onto confidence and finding the raw slope. The difference in confidence was 2.41 - 

2.21 = 0.2 confidence units. The raw slope was 0.45 d’ units/confidence unit, so the 

equivalent of 0.2 confidence units is 0.2*0.45 = 0.09 single task d’ units.  Now, unlike with 

standardised effect sizes, making the measurement of d’ insensitive also does not help 

researchers trying to establish equivalence. As for the second method above, making the 

measurement of single task d’ more noisy (in an unbiased way) does not affect the raw 

regression slope. It just makes it harder to make sensitive claims. For the Bayes factor 

calculator, the “mean” is 1.93-1.83 = 0.10 single task d’ units, the standard error is 0.10/0.96 

= 0.10, and we can use a half-normal with an SD of 0.09.  In this case, B = 1.39, indicating 

insensitivity. We come to a different conclusion. So which method should be preferred, the 

second or the third? In fact, the second is most relevant in this scientific context. The third 

method assumes that the researchers were interested in differences in d’ only to the extent 

they were predicted by confidence -  but the real point is the function of confidence itself in 

predicting multi-task d’. Note something peculiar about the third method: The smaller the 

relation between single task d’ and confidence, the smaller the estimate of single task d’ we 

are trying to pick up, and the harder it is to make claims of equivalence. But the extent of 

equivalence in single task d’ should be the same however confidence and single task d’ were 

correlated.  Thus, the second method gets to the heart of the matter, not the third. The right 

statistical analysis depends on understanding the scientific problem. Canned statistical 

solutions are not the solution for statistics. 

 Up to now, we have talked about whether the claim of equivalence in single task d’ 

can be asserted. Whether or not the data are sensitive enough to support that claim, the claim 

that confidence predicts multi task d’ without being fully mediated by single task d’, can also 

be independently tested by mediation analyses. And in general the question of whether 

mediation is complete or whether there is  no meditation at all are both claims that involve 

potentially accepting null hypotheses and thus (without specifying minimally interesting 

values) can only be answered by use of Bayes factors (see Semmens-Wheeler et al., 2013, for 

how to use the Dienes, 2008, Bayes calculator to give a quick and dirty answer (i.e. one that 

tests the product of regression slopes as if it satisfied the assumption of normality); Dienes, in 

preparation, for code that tests the null hypotheses in mediation analyses assuming only that 

estimates of individual raw regression slopes are normally distributed; and Nuijten, Wetzels, 

Matzke, Dolan, & Wagenmakers, submitted, for a different solution for obtaining Bayes 

factors for mediation analyses using standardized slopes.) By contrast, significance testing, 

including significance testing using Bayesian machinery to get the p-values (e.g. Yuan & 

MacKinnon, 2009), can obtain evidence for partial mediation but cannot in itself (without 

specification of minimally interesting values) allow assertion of either complete or no 
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mediation.  Only a truly Bayesian mediation analysis can achieve the latter (presented in 

Dienes, in preparation, and Nuitjen et al, submitted). 

3. Meta-analysis.  Bayes factors can be used in meta-analysis to gain all the 

advantages of their use in single studies.   Their use is most straightforward when the same 

paradigm has been repeatedly used. In this case, find the overall meta-analytic raw mean and 

overall meta-analytic standard error1, and use these in the Bayes factor calculator.  If 

standardized effect sizes are used to compare across studies with different paradigms and 

dependent variables, Pearson’s r can be used as the standardized effect size, as r can be 

normalized with Fisher’s z, with known standard error, and thus the Dienes (2008) calculator 

used. Bayes factors can in principle be multiplied together to accumulate evidence. However, 

in practice Bayes factors from single studies should not in general be multiplied together to 

get an overall Bayes factor, because this procedure does not take into account that initial 

studies should be used to update the alternative hypotheses of subsequent studies as they are 

added to the calculation in order to respect the axioms of probability (Jaynes, 2003). Thus, it 

is easier to first summarize the data and then determine the single Bayes factor on the 

summary, unless special precautions are taken (cf Rouder & Morey, 2011; Storm, Tressoldi, 

& Utts, 2013). (For point alternative hypotheses as used in the likelihood school of inference, 

e.g. Royall, 1997,  the problem does not arise because if the alternative says only one point 

value is possible (e.g. the hypothesis that the population difference in means is exactly 10 

seconds), the distribution representing the alternative – which is just a spike at the point value 

postulated -  remains the same whatever the previous studies. Thus, in that case, Bayes 

factors can be un-problematically multiplied across single studies.) 

 4. Correlations and regression slopes. While correlations themselves are not normal, 

they can be made normal by a transformation, Fishers z  =  0.5*loge((1 + r)/(1 - r)), which has 

standard error= 1/√ (df -1).  Thus, designs using correlations can make use of the Dienes 

(2008) Bayes calculator (see also Wetzels & Wagenmakers, 2012, for a default Bayesian 

analyses of correlations). However, in many cases, it is the raw regression slopes that really 

address theoretical concerns. Correlations may become reduced by a restriction of range or 

increased error in measurement of the dependent variable, but these factors do not affect the 

raw regression slope (which is nonetheless affected by error in measurement of the 

independent variable, as is a correlation). Raw linear regression slopes can be used with the 

Dienes (2008) calculator, just bearing in mind they have a standard error given by: raw 

slope/t. 

5. Contingency tables.  The following example illustrates the points: 

1. One can interpret complex contingency tables by reducing to 1-df contrasts; 

2. Researchers should be weaned off chi square tests of independence, which serve a 

purpose only for generating p-values and hence are essentially uninformative for non-

significant results. Instead, one wants a measure of strength of association with known 

distribution and standard error; 

                                                            
1 This can be achieved using software on the website for Dienes (2008) for finding a posterior from a prior and 
a likelihood. Entering the first study summary as the prior, the second study summary as the likelihood, and 
obtain the posterior mean and standard error; use the posterior as the prior for the next study, which is 
entered as the likelihood. Keep feeding in the posterior as the prior for the next study until all studies have 
been entered. 
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3. Ln OR  (the natural log of the odds ratio) expresses strength of association and is 

normally distributed with known standard error; 

4. Thus, having obtained Ln OR, one can play. One can compare strengths of 

association in different studies or conditions, put confidence intervals on the strength of 

association, and calculate Bayes factors to illuminate non-significant results. 

McLatchie (2013) primed people in ways meant to cultivate guilty thoughts or guilty 

feelings. People subsequently given a sum of money then chose to either use it immediately 

as is, or to use it after a delay, when it would be increased; further, the use could be either to 

keep the money oneself, or else donate it to a good cause. One hypothesis was that guilty 

thoughts should increase pro-social behaviour (donating rather than keeping); another was 

that guilty feelings would increase impulsivity (using now rather than later). In Study 1 the 

following data shown in Table 4(a) were obtained. 

 

Table 4  

Data from Study 1 on Guilt Priming from McLatchie (2013) 

 

(a) Full Data Set 

                                Keep Now             Keep Delay            Donate Now          Donate Delay 

Guilty Feelings       6                            2                             7                             5 

Guilty Thoughts     3                             2                            1                             14 

Control                   3                            12                           1                             4 

 

(b) A One-degree of Freedom Contrast 

                                                    Keep                                           Donate 

Guilty Thoughts                         5                                                  15 

Control                                      15                                                 5 

 

  

 The data can be collapsed in a number of ways to answer specific questions. For 

example, to test if guilty thoughts increase pro-social action, a collapsed version of the data is 

shown in Table 4 (b). This yields a 2×2 Chi square test of independence of χ2(1) = 7.69, p  

= .0056.  χ2 does not directly express a magnitude of effect. One way of expressing the effect 

size is as an odds ratio: OR =  (15*15)/(5*5) = 9.0. The OR is the product of cell counts 

along one diagonal, divided by the product along the other. If there is no association 

population OR = 1.  We will put the diagonal on top which should be larger according to the 

theory, if the theory makes a directional prediction (as it does here). The natural log of the 

odds ratio, Ln (OR), is normally distributed with a squared standard error given by 1/A + 1/B 

+ 1/C + 1/D, where A, B, C, D are each of the cell entries. So in this case, standard error = √ 
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(1/5 + 1/15 + 1/15 + 1/5) = 0.73. Ln OR = Ln 9.0  = 2.20 in this case. We can test association 

with a z-test = 2.20/0.73 = 3.01, p  = .00262. 

 In Study 2 using the same design but different methods of priming, Mclatchie  

obtained the data in Table 5(a), with the question of current interest shown in Table 5(b). 

 

Table 5  

Data from Study 2 on Guilt Priming from McLatchie (2013) 

 

(a) Full Data Set 

                               Keep Now             Keep Delay            Donate Now           Donate Delay 

Guilty Feelings      6                            4                             6                              4 

Guilty Thoughts    1                            7                              3                              9 

Control                  2                            14                           7                              17 

 

(b) A One-degree of Freedom Contrast 

                                                    Keep                                          Donate 

Guilty Thoughts                         8                                                 12 

Control                                      16                                                24 

 

 

 Now the data look rather different.   χ2 = 0  p = 1.00. More importantly, Ln OR = 0 

with a standard error of 0.56. (So z = 0, p =1.00.)  Is the pattern significantly different in the 

second study?  The Ln ORs differ by 2.20 – 0 = 2.20. The difference has a standard error 

given by the variance sum rule, namely squared standard error of difference is the sum of the 

squared standard errors. Thus standard error of difference = √ (0.732 + 0.562) = 0.92.  Hence, 

to test the difference, z = 2.20/0.92 = 2.39, p  = .017.  Thus, the second study is a failure to 

replicate, the association is significantly less in the second rather than first study. Has the 

association been reduced to zero in the second study? The sort of effect size one might expect 

in the second study is provided by that in the first. Thus we can represent the alternative as a 

half-normal with SD = 2.20.  The “mean” is 0, and the standard error is 0.56. This yields a B 

of 0.24, indicating substantial evidence for the null hypothesis of no association in the second 

study. 

6. Comparing different theories.  A Bayes factor compares theory 1 with theory 2. 

Call a Bayes factor comparing theory 1 with the null hypothesis B1/0.  Call a Bayes factor 

comparing theory 2 with the null hypothesis B2/0 .  Then, the Bayes factor comparing theory 1 

with theory 2, B1/2  =  B1/0  / B2/0 (Dienes, 2008). Thus, the Dienes (2008) Bayes factor 

calculator can be used to compare two substantial theories, or to compare a substantial theory 

to a null region hypothesis rather than a point null. For example, a uniform or a normal 

                                                            
2 To obtain two-tail p-values for z, apart from using R, one can use online calculators, such as 
http://davidmlane.com/hyperstat/z_table.html: click on “outside” and enter – z and +z in the boxes. 

http://davidmlane.com/hyperstat/z_table.html
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defining a null region could be used (cf Morey & Rouder, 2011, who provide interesting 

discussion of the properties of such Bayes factors). 

It is sometimes argued that a point null could never be really true (Cohen, 1994).  But, 

it can be true to an astonishing degree of accuracy, given the scale of resolution of the data 

(Rouder et al, 2009).  In this context, Baguley (2012, p. 369) cites a study on ESP with over 

27,000 participants; the confidence interval for the proportion correct was [.496, .502], where 

0.5 is the chance baseline.  Thus, with well controlled and counter-balanced experiments 

using a point null hypothesis is not absurd, especially if a null region hypothesis is hard to 

specify. Nonetheless, null region hypotheses can also be entirely valid, for example where 

null regions are already decided in a literature (e.g. regarding changes of less than 3 units on 

the Hamilton depression scale as clinically uninteresting).   

A Bayes factor could be used to compare the hypothesis that the change increased 

versus decreased by e.g. having a half normal with SD = expected effect size going in either 

direction. For example, for a mean difference of 5 seconds and an expected effect size, should 

it exist of 10 seconds in either direction, first run the calculator with a half normal with SD = 

10, and data mean = 5 (and obtain  B1/0) ; then, run again by setting the data mean as -5 (and 

obtain B2/0)  . Dividing the two Bayes factors gives a Bayes factors comparing the two 

theories of change in each direction (B1/2).  Bear in mind that if the null hypothesis of zero 

change is true, B1/2  is not driven in any particular direction as data is collected but performs a 

random walk.  Thus sooner or later it will provide strong evidence for one of the two 

directional theories. 
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Appendix 2  Alternatives approaches for indicating relative evidence. 

 Likelihood inference: An alternative method to specifying a range of values predicted 

by the theory is to specify a single value. The likelihood school of inference recommends 

Bayes factors contrasting hypotheses of point values (Dienes, 2008; Royall, 1997). For 

example, one could compare the null hypothesis that the difference is 0 to an alternative that 

the difference is 10. In this way, the need to specify a distribution over population values is 

obviated.  The Bayes factor will, in the limit as increasing observations are collected, come to 

favour the hypothesis that is closer to the truth.  Thus, if the true population value is less than 

5, eventually the null hypothesis will be supported over the alternative. If the population 

value is more than 5, the alternative will come to be supported. But, this means that 5 comes 

to function as a minimally interesting value. Thus, if one were to use point hypotheses in 

one’s Bayes factor, one should decide on the minimally interesting value, m, and use an 

alternative point value of 2m. 

In likelihood inference, there is no need to restrict oneself to a single Bayes factor. 

One could consider the relative strength of evidence for the full range of possible population 

values and thus construct a likelihood interval (Royall, 1997; see the Dienes, 2008, associated 

website for likelihood interval calculators). In this case, the rules of inference by interval 

apply, as shown in Figure 2. Thus, in general, likelihood inference contrasts with full 

Bayesian inference in requiring a specification of the minimally interesting effect size in 

order to connect data to theory. 

BIC,AIC, DIC, etc. A range of model comparison techniques have been developed, 

often based on rather different principles, but all comparing the evidence for two models in a 

way that can be decomposed in terms of the model’s degree of fit to the data, corrected by the 

number of free parameters in the model if this differs between models (see Baguley, 2012, 

chapter 11; Burnham & Anderson, 2002; Glover & Dixon, 2004; Wagenmakers, 2007). The 

main contrast with the approach illustrated in this paper is that such methods, when used for 

null hypothesis testing (which is not their only use), amount to assuming a vague default 

alternative hypothesis to compare against the null. This interpretation is most clear for BIC. 

(AIC is a measure of relative strength of evidence  with in effect a default alternative for null 

hypothesis testing, one somewhat less vague than for BIC; Smith & Spiegelhalter, 1980.)   

Wagenmakers (2007) showed that BIC approximates a Bayes factor that uses a “unit 

information prior” for the alternative (see Rouder et al., 2009, for further development of this 

specification to define vague defaults for Bayes factors). That is, the alternative is specified 

as a normal with the same mean as the mean of the data and a standard deviation equal to the 

standard deviation of the data.  This can be justified on the grounds that if one had any 

accurate prior information at all, it would tend to specify the same mean as the data do, even 

if vaguely. Further, assuming the prior information was worth only one observation of data 

(hence “unit information”), the standard error of that information would be the standard  

deviation of the population data  divided by square root of N, the number of observations – 

and N is just one.  (Technically, one cannot use that very aspect of the data one is trying to 

predict – say its mean – to specify the alternative predicting the same data, as this involves 

“double counting”, Jaynes 2003; however, the vagueness of the unit information prior renders 

the technical point harmless. One can also just set the mean of the alternative  to zero to 

strictly deal with this point.)   The BIC – or, correspondingly, the unit information prior used 

to specify the alternative with the Dienes (2008) Bayes calculator – may be worth considering 

if one finds it difficult to specify the alternative, or wishes to test a vast number of 

alternatives  in a data mining operation. But, the responsibility still rests with the researcher 
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to consider seriously whether the unit information prior matches theoretical expectations. A 

vague prior makes finding evidence for the null easy (Kruschke, 2013b).   

Consider trying to find evidence for unconscious processing by showing null 

performance on a test of awareness. It would seem prudent not to use a vague default, if only 

on the grounds that one wants to make the demonstration of unconscious knowledge 

convincing, and hence not especially easy to obtain.  In fact, more importantly, Dienes (in 

press) shows in this situation that there are informative specifications defining the extent to 

which one expects conscious knowledge, in raw units, rendering defaults irrelevant in that 

scientific context.  

Every case has to be considered on its own merits as to whether the specification of 

the alternative is relevant (Kruschke, 2013b; Vanpaemel, 2010).  In that sense, true defaults 

(i.e. those that could be used at any time to avoid consideration of scientific context) do not 

actually exist in real scientific contexts. A Bayes factor is a means for comparing two theories.  

In the absence of theory, placing credibility or likelihood intervals around parameter 

estimates (without accepting or rejecting any null hypothesis) lets the data speak for 

themselves (Kruschke, 2013b).  
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Appendix 3 Robustness checking 

The Bayes factor is sensitive to how vague H1 is specified as being; the vaguer H1, 

the more the data will support H0. The vagueness of H1 depends mainly on the rough 

maximum value allowed; however, in detail B can depend on the exact shape of the specified 

distribution as well. This raises a question: There  may be a number of ways of specifying 

essentially the same scientific judgments. For example, the scientific judgment for H1 might 

simply be that the maximum population difference cannot be more than about 8. The exact 

shape for the distribution is not further specified; assigning a specific shape then adds more 

precision than the science in the situation actually provides. If B were sensitive to the shape 

beyond the specification of the maximum, the extent to which that B was relevant to the 

scientific theory could be questioned. On the other hand, if the decision based on B were 

robust to major shape changes in simple distributions given the same maximum, then B 

shows its relevance to evaluating the theory. 

Here we consider several Bayes factors, subscripted to indicate the distributions used 

to represent H1 (thanks to Wolf Vanpaemal for this notational suggestion). BN(m,sd) means a 

normal was used with mean m and standard deviation sd; BH(0, sd) indicates a half-normal was 

used with standard deviation sd; BU[min,max] indicates a uniform was used between a minimum 

of min and a maximum of max. Letting a rough maximum for a normal correspond to two 

standard deviations out, BN, BH and BU can then be set to respecting the same scientific 

intuition concerning the maximum population difference.  

The Rouder Bayes factors are also shown below. BJZS(r)  is the JZS B with scaling 

factor r, and BUI(r) uses the unit information prior with scaling factor r.  BJZS and BUI can be 

taken to represent theories about Cohen’s d rather than about raw mean differences so may 

produce somewhat different answers than BN, BH or BU. 

Consider a study where N = 30, the mean is 5.5 units above a null value of 0, SD = 

13.7, so SE = 2.5. A predicted effect of about 5 units can be argued for; or a maximum of 10 

units.  The Rouder B’s were scaled with a predicted Cohen’s d of 5/13.7 = 0.36. The first two 

rows of Table 6 illustrate a significant effect, and the BN and BU just tip over 3, as expected. 

Notice the distributions for the predictions of H1 are centred on 0, so the scientific theory in 

question predicts effects in either direction. In these cases it doesn’t matter if the distribution 

is peaked in the middle (a normal) or flat (a uniform); the same conclusions follow. The 

Rouder B’s, scaled according to the Cohen’s d of the expected effect size, produce somewhat  

less evidence for H1 than the corresponding BN and BU: BJZS and BUI represent theories about 

Cohen’s d rather than about raw mean differences.  BH is rather higher than the others in the 

first row; this is because it represents a different scientific theory, namely a theory that 

predicts effects in only one direction. It is desirable that B may be different when different 

scientific theories are represented. The second row illustrates how a directional theory is 

penalized when the mean goes in the wrong direction. 
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Table 6  

Different Specifications of H1 

 

Mean  SE     BH(0, 5)  BN(0, 5)  BU[-10,10]  BJZS(0.36)   BUI(0.36) 

 5.5 2.5 6.05  3.10  3.40  1.99  2.77 

-5.5 2.5 0.15  3.10  3.40  1.99  2.77 

0 2.5 0.45  0.45  0.31  0.34  0.45 

 

Table 7  

B’s for a Directional Theory 

Mean  SE     BH(0, 5)  BN(5, 2.5) BU[0,10]   

 5 2.5 4.27   5.22   4.42   

-5 2.5 0.16   0.10   0.11 

 6 2.5 8.81  12.10  10.46   

-6 2.5 0.14   0.10   0.09    

 0 2.5 0.45  0.26   0.31   

 

Table 7 presents results for three different ways of representing a directional theory. 

As can be seen, the different distributions produce similar B’s, no matter whether the 

distribution is flat, peaked in the middle or pushed to one end. Thus, conclusions based on 

these Bs will often be robust. In any give case, one needs to check the robustness of the 

conclusions. When evidence is near a threshold, different representations of H1 might tip 

either side of it (though bear in mind that the threshold is itself not meaningful for Bayes, it is 

just a convention). 

Verhagen and Wagenmakers (in press) provide a different Bayes factor calculator that 

takes as its theory that the current study is an exact replication of a previous one, so H1 can 

be set as predicting the standardized effect size previously obtained, with an uncertainty 

defined by the previous standard error in the estimate. Their B closes matches the results 

obtained with the defaults recommended in this paper. For example, Verhagen and 

Wagenmaker’s example 1 is based on Eliot et al (2010): The latter’s experiment 2 was 

designed as replication of their experiment 1. In experiment 1 the raw effect size was 6.79 - 

5.67 = 1.12 units for females.  To interpret experiment 2, the 1.12 can be used as the SD of a 

half-normal. In experiment 2 of Eliot et al, a difference of about 1 raw unit (from the graph in 

the original paper) can be estimated for females; with a t of 3, this gives a standard error of 

0.33. BH(0, 1.12) =  38.57, very close to the 39.73 obtained by Verhagen and Wagenmakers. For 
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males an SE of  0.33 can be estimated from the graph; thus, mean difference  = SE*t =  - .02. 

BH(0, 1.12)  = 0.27, reasonably close to the 0.13 obtained by Verhagen and Wagenmakers. 

(Similar Bs for the Dienes calculator and Verhagen and Wagenmakers calculator hold for 

their other examples.)  In sum, the different Bs, based on somewhat different distributions, 

but the same scientific intuitions, produced reassuring close answers, indicating the 

robustness of the conclusions.  

In sum, the often close results obtained by different Bs when the same scientific 

theories are represented  validates Bs as a method of evaluating such theories. The 

arbitrariness of the distributions chosen to represent H1 can be shown to be inconsequential 

when different simple distributions representing the same theories produce qualitatively the 

same answers. When different answers are obtained for representations of H1 that are equally 

plausible as representations of the same scientific judgments, more data need to be collected 

until the conclusion is robust. 

 


