Supplementary Information

Treatment of wild-type mice with 2,3-butanediol, a urinary biomarker of *Fmo5^{-/-}* mice,

decreases plasma cholesterol and epididymal fat deposition

Sunil Veeravalli¹, Dorsa Varshavi^{2,5}, Flora H. Scott¹, Dorna Varshavi², Frank S. Pullen^{2#},

Kirill Veselkov³, Ian R. Phillips^{1,4} Jeremy R. Everett^{2*} and Elizabeth A. Shephard^{1*}

¹Department of Structural and Molecular Biology, University College London, London, United Kingdom, WC1E 6BT

²Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, Kent, United Kingdom, ME4 4TB

³Department of Surgery and Cancer Faculty of Medicine Imperial College London United Kingdom, SW7 2AZ

⁴School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom, EN4 1NS

⁵Current address Faculty of Science, Biological Sciences University of Alberta Edmonton, Canada, T6G 2R3

#deceased 2021

*corresponding authors Jeremy R Everett: <u>j.r.everett@greenwich.ac.uk</u> <u>Elizabeth A Shephard: e.shephard@ucl.ac.uk</u>

Supplementary Figures and Tables

Supplementary Figure 1. The low-frequency region of the 600 MHz ¹H NMR spectra of urine from *Fmo5*^{-/-} (KO) and wild-type (WT) male mice. The pseudo-doublet signals at ca. 1.146 (inverted blue triangles) and 1.149 ppm (inverted green triangles) are present only in the spectra of *Fmo5*^{-/-} mouse urine. The large, broad singlet at ca. 1.208 ppm and the broad triplet at ca. 1.015 ppm are due to methyl signals from the male sex pheromone 6-hydroxy-6-methyl-heptan-3-one (red circles) (Varshavi et al., 2018). Mice were aged 15 weeks. KO, n=4; WT, n=4.

Supplementary Figure 2. The low-frequency region of the 600 MHz 2D ¹H J-resolved NMR spectrum of $Fmo5^{-/-}$ mouse urine. The 2D spectrum is plotted underneath the corresponding 1D ¹H NMR spectrum. The x-axis shows chemical shifts and the y-axis shows homonuclear proton couplings. The pseudo-doublet signals at ca. 1.146 (blue triangles) and 1.149 ppm (green triangles) are shown to possess at least 6 and 4 transitions respectively, due to their second order nature. The spectra were from an analysis of urine from a 30-week-old male $Fmo5^{-/-}$ mouse.

Supplementary Figure 3. The low-frequency region of the 600 MHz 2D ¹H COSY NMR spectrum of *Fmo5^{-/-}* mouse urine. The spectrum is plotted underneath the corresponding 1D ¹H NMR spectrum. The pseudo-doublet methyl signals at ca. 1.146 (blue triangles) and 1.149 ppm (green triangles) are shown to correlate with methyne signals at ca. 3.734 and 3.630 ppm respectively. The spectra were from an analysis of urine from a 30-week-old male *Fmo5^{-/-}* mouse.

Supplementary Figure 4. An expansion of the low-frequency region of the 600 MHz 2D ¹H COSY NMR spectrum of the stomach contents of an *Fmo5*^{-/-} mouse. The spectrum is plotted underneath the corresponding 1D ¹H NMR spectrum. Weak cross-peaks from methyl signals at ca. 1.146 and 1.147 ppm are shown to correlate with methyne signals at ca. 3.632 and 3.730 ppm respectively and are close in position to those expected for the enantiomeric and meso isomers of 2,3-butanediol.

Supplementary Table 1: data acquisition and processing parameters for 2D NMR spectra of urine samples from an FMO5 knockout mouse at week 60

Parameter	JRES	COSY	TOCSY	HSQC	HMBC
F2 spectral	10.026.7	9,578.5	9,590.8	9,615	6,203
width in Hz					
F1 spectral	78.0	9,578.5	9,596.9	24,875.6	33,523
width in Hz					
data points	4,096	4,096	4,096	1,024	2,048
in t2					
spectral size	8,192	8,192	8,192	4,096	8,192
in F2					
increments	40	512	600	256	128
in t1					
spectral size	256	4,096	1,024	2,048	512
in F1					
number of	2	32	32	64	128
scans					
relaxation	2.00	2.00	2.00	1.50	1.50
delay (s)					
apodisation	sine bell in t1	sine bell in	sine square in t2,	sine bell	sine bell in t1
	and t2 with	t2, sine bell	sine square and	squared in t2,	and t2 with
	first point	and first	first point	sine square	first point
	correction in	point	correction in t1	with first point	correction in
	t1	correction in		correction in	t1
		t1		t1	
Bruker NMR	jresgpprqf	cosygpqfpr	mlevgpphprzf.be	hsqcetgpprsisp	hmbcgplpndqf
pulse				2.2	
sequence					
code					
notes	tilted and	t1 noise		phase-	
	symmetrised	reduced		sensitive and	
				multiplicity-	
				edited	

Supplementary Table 2. NMR data for the authentic reference standards of 2,3butanediol (2,3BD) and data from urine of a 30-week-old male *Fmo5^{-/-}* mouse

sample	δн	δc	COSY	HMBC
•		-		
authentic meso-2,3BD	1.143	19.3	3.738	
authentic meso-2,3BD	3.738	73.7	1.143	
authentic 2R,3R-2,3BD	1.147	20.5	3.627	
authentic 2R,3R-2,3BD	3.627	74.2	1.147	
meso-2,3BD in urine of a	1.146	19.6	3.73	73.6
<i>Fmo5</i> ^{-/-} mouse				
enantiomeric-2,3BD in urine	1.149	20.7	3.63	74.5
of a <i>Fmo5^{-/-}</i> mouse				

δc values are from HSQC spectra. All proton signals in both isomers of 2,3BD are 2nd order multiplets. HMBC indicates long-range ¹³C to ¹H connectivity found in HMBC spectra of mouse urine. All reference standard data are for samples in pH 7.4 deuterated phosphate buffer with TSP reference. Urine samples were prepared as previously described (Varshavi et al., 2018).

Supplementary Table 3. Quantification of 2,3 butanediol in urine of wild-type mice

treated with different doses of the molecule.

Cohort	2,3 butanediol	Creatinine	Concentration of 2,3
	(mM)	(mM)	butanediol normalized
			to creatinine
Untreated	0.00	3.12	0.00
Untreated	0.00	1,65	0.00
Untreated	0.00	3.32	0.00
Untreated	0.00	2.15	0.00
60 mg/kg/d	0.39	2.10	0.19
60 mg/kg/d	0.27	0.55	0.50
60 mg/kg/d	0.55	2.66	0.21
60 mg/kg/d	0.39	0.73	0.53
60 mg/kg/d	0.58	2.39	0.24
250 mg/kg/d	4.41	1.93	2.28
250 mg/kg/d	1.58	1.35	1.17
250 mg/kg/d	0.61	1.17	0.52
250 mg/kg/d	1.48	1.27	3.94
250 mg/kg/d	0.81	0.78	1.05
600 mg/kg/d	1.93	0.65	2.95
600 mg/kg/d	1.57	2.05	0.77
600 mg/kg/d	5.00	1.13	4.44
600 mg/kg/d	3.99	2.90	1.38
600 mg/kg/d	4.61	3.58	1.29

2,3 butanediol and creatinine were quantified as described in the methods section.

Values of 2,3 butanediol are given relative to creatinine to account for any differences in urine concentration at the time of sample collection.

Supplementary Table 4. Analysis of plasma metabolites of wild-type mice after fecal

Cohort	Total cholesterol	HDL cholesterol	Glucose (mmol/L)	Triglycerides	NEFA (mmol/L)	Ketone	Insulin (ng/mI)
	(mmol/L)	(mmol/L)	(1111101/12)	(IIIIIOVE)	(IIIII0/L)	(mmol/L)	(ing/init)
Control $(n = 5)$	4.3 ± 0.10	3.1 ± 0.06	14.8 ± 0.40	1.48 ± 0.12	1.7 ± 0.10	n.d.	2.1 ± 0.39
Fecal transplant (n = 5)	4.4 ± 0.21	3.1 ± 0.13	15.1 ± 0.17	1.52 ± 0.20	1.6 ± 0.48	n.d	1.9 ± 0.26

transplantation from *Fmo5*^{-/-} mice

Data are means \pm SEM. n.d. = not detected.