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Computational method to predict drug pathway profiles  1 

 2 

The approach was based on the Shannon-Entropy Descriptor (SHED) concept. In 3 

the conventional SHED approach (Gregori-Puigjané and Mestres, 2006) the 4 

chemical structure is converted into a 2D topological graph in which the nodes 5 

correspond to the atoms in the drug and edges connecting two nodes indicate the 6 

existence of a chemical bond. From this graph the shortest path length between 7 

each and every residue pair (characterized by their atom centered features) is 8 

calculated and stored as a function of feature pair. The Shannon-entropy quantifies 9 

the variability of feature-pair distributions in the molecule. Here, we have 10 

considerably extended the list of atom-centered features: (Lipophylic (L), positively 11 

charged (P), negatively charged (N), Hydrogen-Bond Donor (D), Hydrogen-Bond 12 

Acceptor (A) and simultaneous Hydrogen-Bond Donor/Acceptor (AD). A given atom 13 

is thus described via a 6-letter string consisting of (0,1), where 1 indicates the 14 

presence of a given feature. For example, a sp3-carbon atom is given by (100000), 15 

while a carboxylic oxygen reads as (001010) indicating the negative charge and the 16 

hydrogen bond acceptor capability. In total 25 feature pairs are used. Drug 17 

information is stored as a 1D Shannon entropy vector and thus allows for large-18 

scale applications. Pairwise drug similarities were quantified by calculating the 19 

Euclidean distance. To obtain the biochemical pathway profile of a query molecule 20 

we screened the DrugBank database (Wishart et al., 2008), a repository of approved 21 

drugs and their experimentally verified protein targets. In a first step drug analogs 22 

from the DrugBank database are identified using the Shannon entropy vector 23 

(euclidean similarity cutoff: 0.25). Next, the experimentally verified protein targets 24 

for the identified DrugBank analogs are used to derive information about the 25 
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involved KEGG biochemical pathways. KEGG pathways are quantified by 26 

enumerating how often they are found in the list of identified DrugBank analogs. The 27 

numbers are normalized to the number of the most prevalent KEGG pathway 28 

(typically metabolic pathway or neuroactive ligand-receptor interaction pathway). 29 

Finally, the normalized pathway numbers are referenced (difference) to the 30 

statistical abundance of KEGG pathway obtained for the entire DrugBank dataset. 31 

The statistical abundance of the KEGG pathways was obtained by predicting the 32 

KEGG pathway profile (as described above) for all of the drugs in the DrugBank 33 

database.  34 

The resulting ranked profile signatures were then used to score corresponding 35 

genes of azelastine-HCL and hydroxychloroquine. These genes were identified and 36 

described for homo sapiens using the HGNC Database, HUGO Gene Nomenclature 37 

Committee (HGNC) of the European Bioinformatics Institute (EMBL-EBI) in the 38 

biomaRt package (Durinck et al., 2009). For azelastine-HCL 201 and for 39 

hydroxychloroquine 185 genes were identified with an overlap of 129 genes. For 40 

azelastine-HCL, 72 genes were exclusively identified and 56 genes were exclusive 41 

for hydroxychloroquine (Supplementary Material 4).  42 

 43 
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Predicted pathway profiles of drugs active against SARS-CoV and/or SARS-45 

CoV-2 46 

 47 

We employed pathway information we predicted for drugs shown to be active 48 

against SARS-CoV and/or SARS-CoV-2. Three experimentally verified and 49 

characterized compounds, hydroxychloroquine (Yao et al., 2020), SSAA09E2 {N-50 
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[[4-(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide} and 51 

SSAA09E3 {N-(9,10-dioxo-9,10-dihydroanthracen-2-yl)benzamide} (Adedeji et al., 52 

2013) were employed. Hydroxychloroquine reduces endosomal acidification, 53 

SSAA09E2 acts by blocking early interactions of SARS-CoV with its receptor, the 54 

angiotensin converting enzyme 2 (ACE2), shared by SARS-CoV-2 and SSAA09E3 55 

prevents fusion of the viral membrane with the host cellular membrane. For all three 56 

selected ligands, the pathway profiles were calculated, and the 50 highest scoring 57 

pathways were considered for the analysis 58 
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