

Supplementary Figure 1. In vivo assembly of CRISPR/Cas9 complexes... **Supplementary Figure 2.** Strategies for cloning of pAMA-based CRISPR plasmids. Supplementary Figure 3. Plasmid-based CRISPR/Cas9 with tRNA-sgRNA cassettes. Supplementary Figure 4. Multiplexed gene editing through CRISPR/Cas9 and DNA oligos. Supplementary Figure 5. pNXR-XXX cloning vectors have the same modular structure... Supplementary Figure 6. pR-XXX cloning vectors consist of resistance and expression cassettes... Supplementary Figure 7. Generation of pink replacement mutants using genR, baR and suR... Supplementary Figure 8. Generation of black gfp expressing strains using genR, baR and suR... **Supplementary Figure 9.** Strategies for targeting *gfp* expression constructs to the *pks1* locus. Supplementary Figure 10. Replacement of Ppks1 by promoters of interest in the phs1- background. Supplementary Figure 11. pIGRXR cloning vectors for targeted insertion of constructs into *igr1/2*. Supplementary Figure 12. Insertion of expression constructs in the intergenic region 1. Supplementary Figure 13. Insertion of expression constructs in the intergenic region 2. Supplementary Figure 14. Constructs in *igr1* and *irg2* do not result in obvious phenotypes. **Supplementary Figure 15.** Integration of *gfp* expression constructs by replacement of *ura3*. Supplementary Table 1. K. petricola strains used in this study.

Supplementary Table 2. Oligonucleotides used in this study.

Supplementary Table 3. Plasmids cloned in this study.

Supplementary Table 4. Transformations of *K. petricola* protoplasts carried out in this study.

Supplementary Sequence 1. K. petricola galactokinase 1.

Supplementary Sequence 2. K. petricola white collar-like 1.

Supplementary Sequence 3. K. petricola white collar-like 2.

Supplementary Sequence 4. K. petricola intergenic region 1 (igr1).

Supplementary Sequence 5. K. petricola intergenic region 2 (igr2).

Supplementary References

1 Supplementary Figures

Supplementary Figure 1. *In vivo* assembly of CRISPR/Cas9 complexes (ribonucleoproteins, RNPs) from plasmid-encoded components. In this transient expression system, cassettes for expression of *cas9* and target-specific sgRNA [protospacer (PS) + sgRNA backbone (*)] are combined with a hygR cassette (*PtrpC::hph*) and the AMA1 replicator sequence from *Aspergillus nidulans* in a circular plasmid. *Cas9* is codon-optimized for *Aspergillus niger*, fused to an encoded SV40 nuclear localization signal [PKKKRKV] and under control of the regulatory sequences of *A. nidulans tef1*. In ribozyme-sgRNA cassettes the sgRNA is flanked by sequences encoding ribozymes [hammerhead (HH) and hepatitis delta virus (HDV)] liberating the sgRNA from the larger mRNA transcript in the nucleus. Transcription is controlled by regulatory sequences from *A. nidulans* (Nødvig et al., 2015). In tRNA-sgRNA cassettes the sgRNA (one or more) is flanked by tRNA sequences and released from the transcript by the endogenous tRNA processing machinery. Transcription by RNA polymerase III is mediated by U3 regulatory sequences from *Aspergillus fumigatus* (Nødvig et al., 2018).

pAMA/tRNA-goi1 ^{PSX}-goi2 ^{PSX}

Supplementary Figure 2. Strategies for cloning of pAMA-based CRISPR plasmids. (**A**) Two targetspecific sgRNA fragments additionally containing PgpdA (0.570 kb) or TtrpC (0.463 kb) are generated by high-fidelity PCR using pFC334 as template (Nødvig et al., 2015), standard primers binding in pFC334/332 (pFC334-F1/-R1) and designed target-specific primers (goi-ribo-PSXF/-PSXR) comprising the protospacer (PS) and the 6-bp-long cleavage site for the HH ribozyme (light green boxes). Assembly of the sgRNA fragments is mediated via the 30-bp-long overlap in the HH sequence, the assembly with pFC332 via 25-bp-long overlaps generated by primers pFC334-F/-R1 during the PCR. (**B**) The target-specific sgRNA fragments are generated by high-fidelity PCR using pFC902 as template (Nødvig et al., 2018), standard primers (pFC334-F1/-R1) and the target-specific primers binding to the sgRNA scaffold (*scf*) (goi-tRNA-PSxF) or the tRNA (goi-tRNA-PSxR) and comprising the PS sequences as 5' overhangs. Assembly of two, three or more sgRNA fragments is mediated via 20-bp-long overlaps i.e. the attached PS sequences.

Supplementary Figure 3. Plasmid-based CRISPR/Cas9 with tRNA-sgRNA cassettes. Protoplasts of the listed recipient strains were co-transformed with the CRISPR plasmids and donor DNA as indicated (Supplementary Table 4). Donor DNA for replacement of *pks1* and *phs1* were resistance cassettes with 75-bp-long 5' overhangs (**A**) and 80-bp-long single-stranded oligonucleotides for targeted gene editing (**B**). Data i.e. the numbers of differentially pigmented colonies derive from three independent transformation experiments yielding two plates each (numbers of colonies in brackets). Pictures shown in Figure 2A, B derive from the first experiment. Rates of homologous recombination (HR) and gene editing (GE) were calculated by dividing the number of pink or white colonies through the total number of colonies counted.

	р	ks	1-0	lig	o2	.7		GC	CT	AA:	FAC	AG	AT(GCT	AGA	CTG	GTC	GGT	CTG	TGC	ACC	GGC		ATA	ACG	GCG	GCA	GCT	GTGI	CT	rgco	GCC	GAC.	rcc:	TA7	ACCG		
																		Т	CTC	GTGC	ACC	GGC	TTA	ATA	A CO	GG	PS2	2 > C	SB a	at +	407	bp						
																					pks	:1		7														7
wт		2	AA	CA'	TA:	FAT.	AC	AGO	сст	AA	гас	'AG	AT	GCT	AGA	CTG	GTO	CGGT	CTG	TGC	ACC	GGC	TTA	ATA	ACG	GCG	GCA	GCT	GTGI	CT.	IGC	GCC	GAC'	ICC.	TTA2	ACCO	ю	
W1		7	AA		гаг	ГАТ	ACA	AGO	сст	AA	ГАС	'AG	АТ	GCT	AGA	СТС	GTO	CGGT	CTG	TGC	ACC	GGC		ата	ACG	GCG	GCA	GCT	GTG	rct'	TGC	GCC	GAC'	TCC	гта	ACCO	:C	
W2		7	AA	'.A'	TAT	TAT.	AC/	AGO	СТ	'AA'	ГАС	'AG	AT(GCT	AGA	CTC	GTO	GGT	CTC	TGC	ACC	GGC		АТА	ACG	GCG	GCA	GCT	GTG	rct'	TGC	GCC	GAC'	TCC'	TTA	ACCO	C.	
W3			AA	יעי	гаг	ГАТ	ACZ	AGO	רבים דרורי	יאמי	ГАС	'AG	ат(GCT	AGA	CTC	GTO	GGT	CTG	TGC		GGC	אדדי		ACG	GCG	GCA	GCT	GTG	гот'	TGC	GCC	GAC	TCC	гта		ic .	
W4		7	AA	'A'	TAT	TAT	AC/	AGO	CT	'AA'	ГАС	'AG	AT	GCT	AGA	СТС	GTO	IGGT	CTC	TGC	ACC	GGC	TTA		ACG	GCG	GCA	GCT	GTG	rct'	TGC	GCC	GAC'	TCC	TTA	ACCO	ю.,	
W5			AA	יעי	гаг	ГАТ	ACZ	AGO	רבים דרורי	ממי	ГАС	'AG	ат(GCT	AGA	CTC	GTO	GGT	CTC	TGC	ACC	GGC		ΔΤΔ	ACG	GCG	GCA	GCT	GTG	гот'	TGC	GCC	GAC	TCC	гта		ic .	
W6				יםי	TAT	ГАТ	ACZ	AGO	TCT	ממי	ГАС	'AG	ΔТ	GCT	AGZ	СТС	GTO	GGT	CTC	TGC	ACC	GGC		АТА	ACG	GCG	GCA	GCT	GTG	rot'	TGC	GCC	GAC	TCC	TTA		ю	
W7		7	AA	'A'	TAT	TAT	AC/	AGO	CT	'AA'	ГАС	'AG	AT	GCT	AGA	СТС	GTO	IGGT	CTC	TGC	ACC	GGC	TTA		ACG	GCG	GCA	GCT	GTG	rct'	TGC	GCC	GAC'	TCC	TTA	ACCO	ю.,	
WR				יםי	TAT	ГАТ	ACZ	AGO	TCT	ממי	ГАС	'AG	ΔТ	GCT	AGZ	СТС	GTO	GGT	CTC	TGC	ACC	GGC	'TTA		ACG	GCG	GCA	GCT	GTG	rot'	TGC	GCC	GAC	TCC	TTA		ю	
wa		 z	200	יער יער	ימי	гат			70T	יממי	гас	'AG	ΔT(CT	AGZ	CTG	GTO	CGT	CTG			GGC		ልጥል	ACG		3CM	GCT	3TG1	r C T	TGC		GAC	TCC			ю 10	
W10		· · · z	200	יער יער	ימי	гат			70T	יממי	гас	'AG	ΔT(GCT	AGZ	CTG	GTO	CGT	CTG			GGC	· 	ΔΤΔ	ACG		CA	GCT	3TG1		TGC		GAC	TCC			10	
W11		7	1710	י גר	יאי	ra T			70T	יממי	TAC	'NC	711 700	CCT		CTC		аст	CTC		1000	ccc	· ጥጥ እ		ACC		2020	CCT			TGC		CAC	TCC			10	
W11		· · · - 7	170	רו יאי	 	 				י א אי	TAC TAC	-AG	711 711								NCC	CCC		አጥአ	ACC		CA				TCC		CAC	TCC				1
01		· · · · 7		רא יאי	דא. דאי	TAT.	ACI			אא. אראי	TAC	'AG	Α1' λτί	CT	AGF ACI			CCT		5190	ACC	660			ACG		CA	CCT			TGC		GAC	TCC			10 10	
01		· · · - 7	170	רו יאי	 	 				י א אי	TAC TAC	-AG	711 711												ACC		CA				TCC		CAC	TCC				1
02			1 71	אט יאר	1 A . דאי	LAL.	ACP ACP			- AA	TAC	AG			AGF ACA										ACG		TON				TGC	ada	GAC	TOO				
03		•••	AA	_A	IA.	IAI.	ACA	AGC		AA.	IAC	AG.	AI	GCI	AGF		GIU	-GG I							ACG	GCG	JCA	GCI	31G.	LCI	IGC	GCC	GAC	ICC	IIA	1000		2
PKS1 ^w	π			•	Y	I	ç	2	Ρ	N	1		D	A	R	L	v	G	L	C	т	G	L	Ι	т	A	Α	А	v	S	С	А	D	S	г	т	А	•
PKS1 ⁴	L118	5		•	Y	I	Ģ	Q	Ρ	N	1		D	А	R	г	v	G	г	С	т	G	-	I	т	А	А	А	v	S	С	А	D	S	г	т	А	•
PKS1 ^Δ	119			•	Y	I	ç	2	Ρ	N	1		D	А	R	L	v	G	L	С	т	G	L	-	т	А	Α	А	v	S	C	А	D	S	L	т	А	•
PKS1 ⁴	114-1	19		•	Y	I	Ģ	Q	Ρ	N	1		D	Α	R	L	v	G	-	-	-	-	-	-	т	Α	Α	Α	v	S	С	Α	D	S	L	т	Α	•

phs1-oligo1 acgtatataaacgctaatacggtgcagCTTATCCGCCTLAaGCTGTCATCGGCCCTGGCTGGTTCGATGTACCTGCCGAG

	intron	,		000	7		•	0.	~ 0				·								_
		-				5						phs	1								
WT	attgaccctacgtatataaacgctaatacggtgca	уCТ	TAT	CCG	ССТ	GAG	JCTO	JTC	ATCO	GCC	CTC	CCTC	GTT	CGA	IGTA	CCT	GCC	GAG	GAG	TG	r
W1	attgaccctacgtatataaacgctaatacggtgca	уCТ	TAT	CCG	ССТ	TAA	GCT	GTC	ATCO	GCC	ССТО	CCTC	GTT	TGA	IGTA	CCT	GCC	GAG	GAG'	ΓTG	г
W2	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	ССТ	TAA	GCT	GTC	ATCO	GCC	CCTG	GCCT	GTT	TGA	ГGTA	CCT	GCC	GAG	GAG'	ΓTG	г
W3	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	ССТ	TAA	GCT	GTC	ATCO	GGC	CCTG	CCT	GTT	TGA	IGTA	CCT	GCC	GAG	GAG'	ΓTG'	Г.,
W4	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	CCT	TAA	GCT	GTC	ATCO	GCC	CTG	GCCT	GTT	TGA	IGTA	CCT	GCC	GAG	GAG'	ΓTG'	ſ
W5	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	CCT	TAA	GCT	GTC	ATCO	GCC	CTG	GCCT	GTT	TGA	IGTA	CCT	GCC	GAG	GAG'	ΓTG'	ſ
W6	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	CCT	TAA	GCT	GTC	ATCO	GCC	CCTG	CCTC	GTT	TGA	IGTA	CCT	GCC	GAG	GAG'	ΓTG'	с
W7	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	ССТ	TAA	GCT	GTC	ATCO	GGC	CCTO	SCCTO	GTT	TGA	IGTA	CCT	GCC	GAG	GAG	ΓTG	с
W8	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	ССТ	TAA	GCT	GTC	ATCO	GGC	CCTO	SCCTO	GTT	TGA	IGTA	CCT	GCC	GAG	GAG	ΓTG	с
W9	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	CCT	TAA	GCT	GTC	ATCO	GCC	CTG	CCTC	GTT	TGA	FGTA	CCT	GCC	GAG	GAG'	ΓTG'	С
W10	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	CCT	TAA	GCT	GTC	ATCO	GCC	CTG	GCT	GTT	TGA	ГGTA	CCT	GCC	GAG	GAG'	ΓTG'	с
W11	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	CCT	TAA	GCT	GTC	ATCO	GCC	CTG	GCT	GTT	TGA	ГGTA	CCT	GCC	GAG	GAG'	ΓTG'	с
W12	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	CCT	TAA	GCT	GTC.	ATCO	GCC	CTG	CCTO	GTT	TGA	IGTA	CCT	GCC	GAG	GAG'	ΓTG'	£
01	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CCG	C			-TC	ATCO	GCC	CCTG	CCT	GTT	CGA	IGTA	CCT	GCC	GAG	GAG'	ΓTG'	с
02	attgaccctacgtatataaacgctaatacggtgca	gСТ	TAT	CC-				C	ATCO	GCC	CCTG	CCT	GTT	CGA	IGTA	CCT	GCC	GAG	GAG'	ΓTG'	c
O3 gDNA	attgaccctacgtatataaacgctaatac						TC	GTC	ATCO	GCC	CTG	CCTO	GTT	CGA.	IGTA	CCT	GCC	GAG	GAG'	ΓTG'	£
O3 cDNA	•••									-GCC	CTG	GCT	GTT	CGA	IGTA	CCT	GCC	GAG	GAG'	ΓTG'	£
PHS1 WT		т	Y	Р	Ρ	Е	А	v	I	G	Р	A V	V F	D	v	Р	А	Е	Е	L	
PHS1 1-63	8	т	Y	Р	P	*															
PHS1 463-	-65, V66L	т	Y	Р	-	-	-	L	I	G	Р	A V	V F	D	v	Р	А	Е	Е	L	
PHS1 463-	-66	т	Y	Р	-	-	-	-	I	G	Р	A V	V F	D	v	Р	А	Е	Е	L	
PHS1 460-	-67, G68S	-	-	-	-	-	-	-	-	S	Ρ	A V	I F	D	v	Ρ	A	Е	Е	L	••

Supplementary Figure 4. Multiplexed gene editing through CRISPR/Cas9 and DNA oligonucleotides. White mutants (W1-W12) were obtained from co-transformation of WT:A95 protoplasts with circular pAMA/tRNA-*pks1*^{PS2}-*phs1*^{PS1} and the single-stranded DNA oligonucleotides *pks1*-oligo2.7 and *phs1*-oligo1 (Supplementary Table 4). Orange mutants (O1-O3) were obtained from the transformation of *pks1*- protoplasts with circular pAMA/tRNA-*phs1*^{PS1} (Figure 2B,C). The PS-spanning regions of pigment-deficient mutants were amplified by PCR (*pks1*^{PS2}: *pks1*-PS1-sF2/*pks1*-RNAi-R1; *phs1*^{PS1}: *phs1*-hi5F/*phs1*-WT-R) and sequenced. Two different mutations causing in-frame deletions of 3 bp in *pks1* combined with the same 2-bp-mutation in *phs1* resulting in a premature stop codon were identified in the twelve white mutants. O1-3 contain the same 18-bp-long in-frame deletion in *pks1* and different in-frame mutations of 9 bp (> 3-aa-deletion plus one aa exchange), 12 bp (> 4-aa-deletion) or 23 bp in *phs1*. As the deletion in the latter mutant includes the 3' splicing site of an intron, cDNA of mutant O3 was synthesized and sequenced as well.

Supplementary Figure 5. pNXR-XXX cloning vectors have the same modular structure and were primarily designed for usage in *B. cinerea* (Schumacher, 2012). The plasmids contain a resistance (R) cassette and an expression (E) cassette in opposite orientation that are flanked by the 5' and 3' noncoding regions of *bcniaD* (nitrate reductase) or *bcniiA* (nitrite reductase) for facilitating targeted integration into respective gene loci of B. cinerea. The 3' noncoding regions represent the terminators of the two genes, and thus function as terminators (TniaD, TniiA) of the R genes (hph, nat1, bar, nptII, sur, ble, fferg27 in these constructs. Genes can be inserted upstream or downstream of xfp (mch, gfp, dsred, gfpN, gfpC) or can replace xfp by using the NcoI and/or NotI sites. Modules are contained in different combinations in the available plasmids (Pxxx – PoliC, Pact1, PgpdA; Txxx – Tgluc, Ttub1, TtrpC). New modules in recently cloned plasmids are PgpdA and the R genes *nptII*, bar and sur (Supplementary Table 3). R cassettes flanked by ~75-bp-long homologous (SH) sequences are generated by PCR using plasmids of the pNDR-OGG series as template and primers binding in conserved regions of the R cassettes (TniaD, short part of PoliC [*]) and containing 5' overhangs homologous to the 5'- and 3'-noncoding regions of the goi. Similarly, primers binding in the R (TniaD/iA-XXX-SH5F) and E cassettes (Txxx-XXX-SH3R, Pxxx-goi-SH3R, xfp-goi-3'-SH3R) and containing ~75-bp-long homologous sequences to a locus of interest as 5' overhangs can be used to amplify expression constructs for targeted integration into the fungal genome (yellow boxes noncoding regions of the locus/gene of interest; striped boxes - coding sequence of gene of interest).

Supplementary Figure 6. pR-XXX cloning vectors consist of resistance (R) and expression cassettes (-XXX) from the pNXR-XXX series (Schumacher, 2012) that were assembled in the opposite orientation in pRS426^{$\Delta NcoI$} (this study; Supplementary Table 3). The first set of vectors contain the expression cassette PgpdA::gfp::Tgluc (-GGG) fused to one of the five available R cassettes for K. petricola (hygR [H], natR [N], genR [G], baR [P], suR [S]). pR-XXX can be used as template for amplification of SH fragments for expressing a *goi-xfp* fusion gene from the native (*goi*) promoter. pR-XXX contains a short part of PoliC (*) i.e. the goi-SH3R binding site that allows for the re-use of goi-SH3R from a standard gene replacement (KO) approach. Primer pairs for generating the targetspecific donor DNA $[(x_{fp}::T_{xxx}) - (T_{nia}D::R_{gene}::P_{trp}C]]^{goi-3}$ from pR-XXX for knock-in downstream of the goi are xfp-goi-3'-SH5F/goi-SH3R. As the R cassettes contain TniaD, these plasmids can be used for the amplification of regular target-specific donor DNA for KO approaches as well i.e. $[(TniaD::R gene::PtrpC4)]^{\Delta goi}$ with primer pair goi-SH5F/goi-SH3R. Besides, pR-XXX vectors are suitable for cloning of gene fusion constructs by using the restriction sites NcoI (pH-, pNand pP-XXX only) and NotI (all pR-XXX) as described for pNXR-XXX. SH/yellow boxes noncoding regions of the locus/gene of interest (*loi/goi*); SH/striped boxes – coding sequence of *goi*; red asterisks – stop codons of xfp/goi.

Supplementary Figure 7. Generation of pink replacement mutants using genR, baR and suR selection systems. Replacement fragments with 75-bp-long homologous sequences to the 5' and 3' noncoding regions of *pks1* and comprising genR [G], baR [P] or suR [S] cassettes were generated by PCR using the primer pair *pks1*-RT5F/*pks1*-RT3R and pNDP-OGG, pNDG-OGG or pNDS-OGG (Supplementary Table 3) as template. Protoplasts of WT:A95 were co-transformed with the amplicons and pAMA/ribo-*pks1*^{PS2} (Supplementary Table 4) yielding high numbers of pink colonies on the transformation plates (Figure 3). Diagnostic PCRs of six pink *genR*, *baR* and *suR* transformants with primer combinations shown in the scheme were performed. For most mutants the expected amplicons for HR events at 5' and 3' of *pks1*^{PS2} were detected.

Supplementary Figure 8. Generation of black *gfp* expressing strains using genR, baR and suR selection markers. (A) Strategies for targeted insertion of *gfp* expression cassettes into *igr2* using the new resistance cassettes. Fragments with 75-bp-long homologous sequences to igr2 (Supplementary Figure 13; Figure 6) were generated by PCR using the primer pair TniaD-igr2-SH5F/Tgluc-igr2-SH3R and pNDP-OGG, pNDG-OGG or pNDS-OGG (Supplementary Table 3) as template. Protoplasts of WT:A95 were co-transformed with the amplicons and pAMA/ribo-igr2PS1 (Supplementary Table 4). Diagnostic PCRs of six arbitrarily chosen genR, baR and suR transformants with primer pairs shown in the scheme revealed high rates of homologous recombination (HR) at both sites of the Cas9 cutting site which is indicated as green arrow (PS1). (B) Wild type A95 is less sensitive to G418, GFS and CME when cells are spread with an inoculation loop onto the agar. In parallel with the growth assay shown in Figure 3, the same media i.e., solidified SDNG without (control) and with different concentrations of the selective agents, was inoculated with WT:A95 and the three resistant insertion strains igr2 [G-OGG], igr2 [P-OGG] and igr2 [S-OGG] by streaking undefined numbers of cells taken from one-week-old surface-grown colonies using plastic inoculation loops. As this inoculation procedure resembles the transfer of cells of top-grown (putative resistant) colonies from transformation plates (primary selection) to fresh selective medium for confirming the transformation event (secondary selection), inhibitory concentrations of G418 (geneticin), GFS (glufosinate ammonium) and CME (chlorimuron ethyl) for efficient transformant selection were determined on this basis.

Supplementary Figure 9. Strategies for targeting *gfp* expression constructs to the *pks1* locus. For the comparative analysis of *gfp* expression from six different promoters (PgpdA, Pgln1, PoliC, Pact1, Pgal1, PniaD; Table 3), the constructs (*gfp* expression cassette linked to a hygR cassette) were integrated into WT:A95 by replacing *pks1* including 1 kb of the upstream noncoding region. Expression constructs were amplified from plasmids (Schumacher, 2012) (Supplementary Table 3) using primers with 75-bp-long 5' overhangs homologous to the non-coding regions of *pks1* (yellow boxes SH-5' and SH-3') and co-transformed with the Cas9/sgRNA^{*pks1*}-delivering plasmid pAMA/ribo-*pks1*^{PS2} (Supplementary Table 4, Figure 4). Primers used for diagnostic PCRs (data not shown) and the site of the Cas9-induced DSB (PS2) are indicated.

Supplementary Figure 10. Replacement of P*pks1* by promoters of interest (P*oi*) in the *phs1*background. For comparative analysis of *pks1* expression (pigmentation) from different promoters (Table 3), the indicated constructs (promoter fused to a hygR cassette) were introduced in the *phs1*background. Lacking carotenoid synthesis was considered to enable the detection of different pigmentation levels ranging from white to black more easily. Sequences homologous to the 5'noncoding and the coding region of *pks1* for targeted integration (yellow / striped boxes) were attached to the expression constructs by PCR using primers with appropriate 5' overhangs. *Phs1*- protoplasts were co-transformed with a Cas9/sgRNA^{*pks1*}-delivering plasmid pAMA/ribo-*pks1*^{PS4} (Cas9 cutting site is highlighted with the green arrow PS4) and the seven different constructs shown (Supplementary Table 4; Figure 4). By this, the 5'-noncoding region of *pks1* (1-kb-long, considered as *Ppks1*) was replaced by hygR-P*oi* or hygR only ($\Delta Ppks1::pks1$, background control). Primers used for genotyping are indicated. PCR fragments obtained with *Poi-s*FX/-hiR and *pks1*-hiR (HR at 3') of two clones per construct were sequenced to verify the absence of detrimental point mutations in *pks1* (data not shown).

Supplementary Figure 11. pIGRXR cloning vectors for targeted insertion of expression constructs into igr1/2. These vectors were assembled by the yeast recombination machinery in this study (Supplementary Table 3) and contain the following modules: [1] long homologous (LH) sequences to the two chosen intergenic regions (igrX is igr1 or igr2) that flank the site for the Cas9-induced DSB (PS1, arrow) for mediating insertion of the constructs by HR ($igr1-5^{\circ} - 1.185$ kb, $igr1-3^{\circ} - 0.848$ kb, $igr2-5^{\circ}-0.917$ kb, $igr2-3^{\circ}-1.591$ kb), [2] a cassette from the pNDR-XXX series consisting of PtrpC, R (resistance) gene, and TniaD for mediating resistance to HYG (hph), NTC (nat1), G418 (nptII), GFS (bar) or CME (sur), [3] identical 5F adapter sequences with AscI site (5FA), and 3R adapter sequences with PacI site (3RA) for cloning, and [4] multiple cloning sites (5'MCS and 3'MCS) that contain sites for four rarely cutting restriction enzymes for isolation of large expression/complementation constructs by digestion. Both unique restriction sites in the adapter sequences can be used for cloning, i.e., for linearization of the entry plasmid for assembly with amplicons with overlapping sequences to 5FA and TniaD (AscI) or PtrpC and 3RA (PacI) via HiFi DNA assembly or yeast recombination cloning. So far expression constructs (e.g., AGT or OCT resulting in pIGRXH-AGT and pIGRXN-OCT) and complementation constructs (gene of interest with 5' and 3' noncoding regions for native expression; not shown) have been inserted into pIGRXR by using the PacI site. Smaller expression/complementation constructs for transformation of K. petricola can be also isolated from the plasmid by PCR using the primer pair igrX-RF-F1/igrX-RF-R1 (Supplementary Table 2). Then, all homologous sequences (flanks) are ~0.5 kb in length. Y – restriction enzyme(s) with restriction site in the MCS only; *goi* – gene of interest.

Supplementary Figure 12. Insertion of expression constructs in the intergenic region 1. The genomic locus hereafter called intergenic region 1 (*igr1*) on contig 1 of the *K. petricola* A95 genome is 2.033 kb in length (Supplementary Sequence 4). The insertion site i.e., the site for the Cas9-mediated DSB is marked by an arrow (PS1). For experimental validation of *igr1* as a suitable insertion site, four strains containing the indicated constructs – *gfp* or *mch* expression cassettes (green or red) fused to hygR or natR cassettes (blue or dark green) – were generated by co-transformation of WT:A95 protoplasts with pAMA/ribo-*igr1*^{PS1} and SH constructs (yellow boxes) amplified by PCR using pNDH-OGG and pNAH-GGG as templates or LH constructs (light yellow boxes) isolated by digestion from cloned pIGR1H-AGT or pIGR1N-OCT (Supplementary Table 3, Supplementary Table 4). Primers used for diagnostic PCR and expected fragment sizes are indicated (black triangles and lines). Diagnostic PCRs detected the desired HR events at 5' and 3' of the insertion site *igr1*^{PS1} revealing that all tested strains – with exception of *igr1* [H-AGT]-T7 – have inserted the expression constructs correctly.

Supplementary Figure 13. Insertion of expression constructs in the intergenic region 2. The genomic locus hereafter called intergenic region 2 (*igr2*) on contig 1 of the *K. petricola* A95 genome is 2.568 kb in length (Supplementary Sequence 5). The insertion site i.e., the site for the Cas9-mediated DSB is marked by the green arrow (PS1). For experimental validation of *igr2* as a suitable insertion site, four strains containing the indicated constructs were generated by co-transformation of WT:A95 protoplasts with pAMA/ribo-*igr2*^{PS1} and SH constructs (yellow boxes) amplified by PCR from pNDH-OGG and pNAH-GGG or LH constructs (light yellow boxes) isolated by digestion from cloned pIGR2H-AGT or pIGR2N-OCT (Supplementary Table 3, Supplementary Table 4). The correct insertion of expression constructs was determined by diagnostic PCR using the indicated primers. Most of the tested strains had undergone homologous integration of the constructs.

Supplementary Figure 14. Constructs in *igr1* and *irg2* do not result in obvious phenotypes. Cell suspensions $(10^4, 10^3, 10^2 \text{ and } 10^1 \text{ cells}$ from the left to the right) of the *gfp*- (H-AGT) or *mcherry*- (N-OCT) expressing strains were dropped onto solid SDYG pH 5 (control), SDYG adjusted to pH 3 or pH 8 for inducing pH stress, SDYG supplemented with different stress-inducing agents [1.0 M NaCl for inducing osmotic stress, 1.5 mM hydrogen peroxide (H₂O₂) for inducing oxidative stress, 1.0 mM calcofluor white (CFW) for inducing cell wall stress, 0.01 % sodium dodecyl sulfate (SDS) for inducing membrane stress, or 0.4 M CaCl₂ for triggering calcium/stress signaling pathways]. For UV stress, the dropped cells on SDYG pH 5 were treated with 0.6 J/cm². Pictures were taken after nine days of incubation at 25 °C (control, + stresses) or 30 °C (heat stress) in darkness.

Supplementary Figure 15. Integration of *gfp* expression constructs by replacement of *ura3*. For comparing the expression of *gfp* under control of PoliC, PgpdA and Pact1 from different genomic loci, *ura3* encoding the orotidine 5'-phosphate decarboxylase (uracil synthesis) was chosen as another integration site to obtain melanized *gfp*-expressing strains. The ORF was replaced by the indicated Poi::*gfp* constructs by co-transforming WT:A95 protoplasts with pAMA/ribo-*ura3*^{PS3} and PCR-amplified expression constructs using primers with 75-bp-long homologous sequences (yellow boxes) to 5'- and 3'-noncoding regions of *ura3* and pNDH-OGG, pNAH-GGG or pNDH-AGT as template (Supplementary Table 4). The site of the Cas9-induced DSB is highlighted by the green arrow (PS3). The used primer pairs for genotyping and the expected fragment sizes are indicated. Two strains with correct replacement/integration per expression construct as determined by diagnostic PCR (data not shown) were studied by fluorescence microscopy (Figure 6C).

2 Supplementary Tables

Supplementary Table 1. K. petricola strains used in this study.

Strain name	GMO ID	Clone #	Genotype	Phenotype	Reference
WT:A95	n/a	n/a	A95	black	(Nai et al., 2013)
pks1–	KP-0067	O26.1	A95; <i>pks1</i> – (Δ18 bp @ ~407 bp)	pink	(Voigt et al., 2020)
phs1–	KP-0085	PO.22	A95; phs1- (premature stop @ 347 bp)	black	(Voigt et al., 2020)
pks1–/phs1–	KP-0081	00.2	A95; pks1- (+1-bp @ 407 bp); phs1- (premature stop @ 347 bp)	white	(Voigt et al., 2020)
pks1–/phs1–	KP-0201	01, 02, 03	A95; pks1– (Δ 18 bp @ ~407 bp); phs1– (in-frame deletions @ ~345 bp)	orange	Figure 2, Figure S4
pks1–/phs1–	KP-0205	W1, W2, W3, W4	A95; <i>pks1</i> – (Δ3 bp @ ~407 bp); <i>phs1</i> – (premature stop @ 347 bp)	white	Figure 2, Figure S4
∆ <i>pks1</i> [H-AGT]	KP-0115	T1.1, 2.1, 3.1	A95; ∆pks1 [(TniaD::hph::PtrpC4)–(▶Pact1::gfp ::TtrpC)]	pink, hygR; GFP	Figure 4, Figure S9
∆pks1 [H-GGG]	KP-0116	T1.1, 2.1, 3.1	A95; ∆ <i>pks1</i> [(T <i>niiA</i> :: <i>hph</i> ::P <i>trp</i> C 4)–(▶PgpdA::gfp ::Tgluc)]	pink, hygR; GFP	Figure 4, Figure S9
∆ <i>pks1</i> [H-OGG]	KP-0117	T1.1, 2.1, 2.4	A95; ∆pks1 [(TniaD::hph::PtrpC4)–(▶PoliC::gfp ::Tgluc)]	pink, hygR; GFP	Figure 4, Figure S9
∆ <i>pks1</i> [H-QGT]	KP-0119	T1.1, 2.1, 3.1	A95; ∆ <i>pks1</i> [(T <i>niiA</i> :: <i>hph</i> ::P <i>trp</i> C 4)–(▶PgIn1::gfp ::Tgluc)]	pink, hygR; GFP	Figure 4, Figure S9
∆ <i>pks1</i> [H-LGT]	KP-0120	T1.1, 2.1, 3.1	A95; ∆pks1 [(TniaD::hph::PtrpC◀)–(▶Pgal1::gfp ::TtrpC)]	pink, hygR; GFP	Figure 4, Figure S9
∆ <i>pks1</i> [H-NGT]	KP-0121	T1.1, 2.1, 3.2	A95; ∆pks1 [(TniaD::hph::PtrpC◀)–(▶PniaD::gfp ::TtrpC)]	pink, hygR; GFP	Figure 4, Figure S9
phs1–/Pact1::pks1 [H]	KP-0141	T5, T6	A95; <i>phs1</i> – (stop @ 347 bp); ΔP <i>pks1</i> [(T <i>niaD</i> :: <i>hph</i> ::P <i>trpC</i> 4)–(▶Pact1::pks1)]	black, hygR	Figure 4, Figure S10
phs1–/PgpdA::pks1 [H]	KP-0142	T3, T4	A95; <i>phs1</i> – (stop @ 347 bp); ΔP <i>pks1</i> [(T <i>niiA::hph::</i> P <i>trpC</i> 4)–(▶ <i>PgpdA::pks1</i>)]	black, hygR	Figure 4, Figure S10
phs1–/PoliC::pks1 [H]	KP-0143	T3, T4	A95; <i>phs1</i> – (stop @ 347 bp); ΔP <i>pks1</i> [(T <i>niaD</i> :: <i>hph</i> ::P <i>trpC</i> 4)–(▶PoliC::pks1)]	black, hygR	Figure 4, Figure S10
phs1–/PgIn1::pks1 [H]	KP-0144	T7, T8, T9	A95; <i>phs1</i> – (stop @ 347 bp); ΔP <i>pks1</i> [(T <i>niiA::hph::</i> P <i>trpC</i> 4)–(▶PgIn1::pks1)]	black, hygR	Figure 4, Figure S10
phs1–/Pgal1::pks1 [H]	KP-0145	T1, T2, T3	A95; <i>ph</i> s1– (stop @ 347 bp); ΔP <i>pk</i> s1 [(T <i>niaD</i> :: <i>hph</i> ::P <i>trp</i> C4)–(▶Pgal1::pks1)]	gray, hygR	Figure 4, Figure S10
phs1–/PniaD::pks1 [H]	KP-0146	T1, T5, T6	A95; <i>phs1</i> – (stop @ 347 bp); ΔP <i>pks1</i> [(T <i>niaD</i> :: <i>hph</i> ::P <i>trp</i> C4)–(▶P<i>niaD</i>::<i>pks1</i>)]	black, hygR	Figure 4, Figure S10
phs1–/ΔPpks1::pks1 [H]	KP-0147	T1, T2, T3	A95; <i>phs1–</i> (stop @ 347 bp); ΔP <i>pks1</i> [(T <i>niaD</i> :: <i>hph</i> ::P <i>trpC</i> 4)]	gray, hygR	Figure 4, Figure S10
Pgal1::pks1 [H]	KP-0265	T3, T4, T5, T6	A95; ∆P <i>pks1</i> [(T <i>niaD::hph::</i> P <i>trpC</i> 4)–(▶Pgal1::pks1)]	dark pink, hygR	Figure 4, Figure S10
ΔP <i>pks1::pks1</i> [H]	KP-0260	T1, T3, T4, T5	A95; ΔPpks1 [(TniaD::hph::PtrpC4)]	dark pink, hygR	Figure 4, Figure S10
igr1 [H-AGT]	KP-0106	T2, T4, T6	A95; igr1 [(TniaD::hph::PtrpC◀)–(▶Pact1::gfp ::TtrpC)]	black, hygR; GFP	Figure 6, Figure S12

Strain name	GMO ID	Clone #	Genotype	Phenotype	Reference
igr1 [N-OCT]	KP-0101	T2, T4, T5, T7	A95; igr1 [(TniiA::nat1::PtrpC4)–(▶PoliC::mch ::Ttub1)]	black, natR; GFP	Figure 6, Figure S12
igr1 [H-GGG]	KP-0172	T1, T2, T3, T4	A95; igr1 [(TniiA::hph::PtrpC4)–(>PgpdA::gfp ::Tgluc)]	black, hygR; GFP	Figure 6, Figure S12
igr1 [H-OGG]	KP-0173	T1, T2, T3, T6	A95; igr1 [(TniaD::hph::PtrpC◀)–(▶PoliC::gfp ::Tgluc)]	black, hygR; GFP	Figure 6, Figure S12
igr2 [H-AGT]	KP-0094	T1, T2, T7, T8	A95; <i>igr</i> 2 [(T <i>niaD</i> :: <i>hph</i> ::PtrpC◀)–(▶Pact1::gfp ::TtrpC)]	black, hygR; GFP	Figure 6, Figure S13
igr2 [N-OCT]	KP-0108	T1, T2, T3, T7	A95; <i>igr</i> 2 [(T <i>niiA::nat1::</i> P <i>trp</i> C◀)–(▶PoliC::mch ::T <i>tub1</i>)]	black, natR; GFP	Figure 6, Figure S13
igr2 [H-GGG]	KP-0176	T1, T3, T4, T6	A95; igr2 [(TniiA::hph::PtrpC◀)–(▶PgpdA::gfp ::Tgluc)]	black, hygR; GFP	Figure 6, Figure S13
igr2 [H-OGG]	KP-0177	T2, T4, T6	A95; igr2 [(TniaD::hph::PtrpC◀)–(▶PoliC::gfp ::Tgluc)]	black, hygR; GFP	Figure 6, Figure S13
∆ <i>ura3</i> [H-AGT]	KP-0148	T1.6, T1	A95; <i>∆ura3</i> [(T <i>niaD::hph:</i> :PtrpC◀)–(▶Pact1::gfp ::TtrpC)]	black, hygR, ura-; GFP	Figure 6, Figure S15
∆ <i>ura</i> 3 [H-OGG]	KP-0149	T6, T7, T8	A95; <i>∆ura3</i> [(T <i>niaD::hph:</i> :PtrpC◀)–(▶PoliC::gfp ::Tgluc)]	black, hygR, ura-; GFP	Figure 6, Figure S15
∆ <i>ura</i> 3 [H-GGG]	KP-0171	T1.5, T6	A95; ∆ura3 [(TniiA::hph::PtrpC4)–(▶PgpdA::gfp ::Tgluc)]	black, hygR, ura-; GFP	Figure 6, Figure S15
∆ pks1 [G]	KP-0192	T1, T2, T3, T4	A95; ∆pks1 [(TniaD:: nptll ::PtrpC◀)]	pink, genR	Figure 3, Figure S7
∆ <i>pks1</i> [P]	KP-0242	T1, T2, T3, T4	A95; ∆ <i>pks1</i> [(T <i>niaD</i> :: bar ::PtrpC◀)]	pink, baR	Figure 3, Figure S7
∆ <i>pks1</i> [S]	KP-0243	T2, T4, T5, T6	A95; ∆ <i>pks1</i> [(T <i>niaD</i> :: sur ::PtrpC◀)]	pink, suR	Figure 3, Figure S7
igr2 [G-OGG]	KP-0246	T1, T2, T3, T6	A95; <i>igr</i> 2 [(T <i>niaD</i> :: nptII ::PtrpC◀)–(▶PoliC::gfp::Tgluc)]	black, genR; GFP	Figure 3, Figure S8
igr2 [P-OGG]	KP-0247	T2, T3, T4, T5	A95; igr2 [(TniaD:: bar ::PtrpC◀)–(▶PoliC::gfp::Tgluc)]	black, baR; GFP	Figure 3, Figure S8
igr2 [S-OGG]	KP-0248	T4, T6	A95; igr2 [(TniaD::sur::PtrpC4)–(▶PoliC::gfp::Tgluc)]	black, suR; GFP	Figure 3, Figure S8
∆ <i>pks1</i> [H-W1G]	KP-0182	T1, T2, T3, T4	A95; ∆pks1 [(TniiA::hph::PtrpC4)–(▶PgpdA::wcl1-gfp::Tgluc)]	pink, hygR; nuclear GFP	Figure 5
∆ <i>pks1</i> [N-GW2]	KP-0186	T1, T2, T3, T4	A95; ∆pks1 [(TniaD::nat1::PtrpC4)–(▶PoliC:: gfp-wcl2 ::Tgluc)]	pink, natR; nuclear GFP	Figure 5
∆ <i>pks1</i> [H-W1M] + ∆ <i>phs1</i> [N-GW2]	KP-0214	B1-1, -2, -3, -4	A95; ∆pks1 [(TniiA::hph::PtrpC4)–(▶PgpdA:: wcl1-mch ::Ttub1)]; ∆phs1 [(TniaD::nat1::PtrpC4)–(▶PoliC:: gfp-wcl2 ::Tgluc)]	white, hygR, natR; nuclear GFP, nuclear mCH	Figure 5
∆ <i>pks1</i> [H-W1GC] + ∆ <i>phs1</i> [N-GNW2]	KP-0215	B2-1, -2, -3, -4	A95; ∆pks1 [(TniiA::hph::PtrpC4)–(▶PgpdA:: wcl1-gfpC ::Tgluc)]; ∆phs1 [(TniaD::nat1::PtrpC4)–(▶PgpdA:: gfpN-wcl2 ::TtrpC)]	white, hygR, natR; nuclear GFP	Figure 5
∆ <i>pks1</i> [H-W1GC] + ∆ <i>phs1</i> [N-GN]	KP-0216	B3-1, -2, -3	A95; ∆pks1 [(TniiA::hph::PtrpC4)–(▶PgpdA:: wcl1-gfpC ::Tgluc)]; ∆phs1 [(TniaD::nat1::PtrpC4)–(▶PgpdA:: gfpN ::TtrpC)]	white, hygR, natR	Figure 5
∆ <i>pks1</i> [H-GC] + ∆ <i>phs1</i> [N-GNW2]	KP-0217	B4-1, -2, -3	A95; ∆pks1 [(TniiA::hph::PtrpC4)–(▶PoliC:: gfpC ::Tgluc)]; ∆phs1 [(TniaD::nat1::PtrpC4)–(▶PgpdA:: gfpN-wcl2 ::TtrpC)]	white, hygR, natR	Figure 5
∆ <i>pks1</i> [H-GC] + ∆ <i>phs1</i> [N-GNW2]	KP-0218	B5-1, -2, -3	A95; ∆pks1 [(TniiA::hph::PtrpC4)–(▶PoliC:: gfpC ::Tgluc)]; ∆phs1 [(TniaD::nat1::PtrpC4)–(▶PgpdA:: gfpN ::TtrpC)]	white, hygR, natR	Figure 5

Supplementary Table 2. Oligonucleotides used in this study.

Primer name	Sequence (5'→ 3')	Features (5'→ 3')
Kppks1-tRNA-PS2R	ttattaagccggtgcacaga-TGCATCCGTGAATCGAAC	kppks1 ^{PS2} – tRNA
Kppks1-tRNA-PS2F	tctgtgcaccggcttaataa-GTTTTAGAGCTAGAAATAGCAAGTTAAAAT	kppks1 ^{PS2} – sgRNA
Kppks1-AMA-PS4F	$\verb"gtccgtgaggacgaaacgagtaagctcgtc-TTGAGATTCGGAAACCGACC-gttttagagctagaaatagcaagttaaa$	HH-dw – PS4 – sgRNA
Kppks1-AMA-PS4R	gacgagettactcgtttcgtcetcacggaetcatcag-TTGAGA-cggtgatgtetgetcaageg	HH-up – 6bp-PS4 – PgpdA
T <i>niaD-kppks1</i> -SH5F	${\tt agcgtccactctttccgcagcaagtatcccagtagaccagcagatgcttctcagcttgatcactcctgc-GCATTGGATTAATAATTGTTGCTAAGCGAG}$	kppks1-5' – TniaD
T <i>niiA-kppks1</i> -SH5F	$\tt ctggtggaagcgtccactctttccgcagcaagtatcccagtagaccagcagatgcttctcagcttgatcactcctgc-CAGATGCTGCTGGCAAGGTTAC$	kppks1-5' – TniiA
PgpdA-kppks1-SH5F	$\tt ctggtggaagcgtccactctttccgcagcaagtatcccagtagaccagcagatgcttctcagcttgatcactcctgc-GTACAGTGACCGGTGACTCTTTC$	kppks1-5' – PgpdA
T <i>trpC-kppks1</i> -SH3R	$\tt ttgttgaaacaggttgcagtagttgatccagacaacaccatgatatgccagtcaagtgagtaggttcgtgtggttgc-TCGAGTGGAGATGTGGAGTGGGGGGGGGGGGGGGGGGGG$	kppks1-3' – TtrpC
Tgluc-kppks1-SH3R	tgttgaaacaggttgcagtagttgatccagacaacaccatgatatgccagtcaagtgagtaggttcgtgtggttgc-ATCTTGTTGGGGGGAAGGGGTTG	kppks1-3' – Tgluc
T <i>tub1-kppks1</i> -SH3R	tgttgaaacaggttgcagtagttgatccagacaacaccatgatatgccagtcaagtgagtaggttcgtgtggttgc-ggatccAGACAGCCAATTGAAACG	kppks1-3' – Ttub1
Kppks1-Pact1-SH3R	aagacctttgtgaagaacgcccggcagtctgccgtttggtcaccgaacacgtagacttcctccatgg-GGTTGATAAATTAAGACG	kppks1 – Pact1
Kppks1-PgpdA-SH3R	$\tt ctttcttgggaagacctttgtgaagaacgcccggcagtctgccgtttggtcaccgaacacgtagacttcctccat-GGAAGCTTAGATCTGTAGCTG$	kppks1 – PgpdA
Kppks1-PoliC-SH3R	$\tt ctttcttgggaagacctttgtgaagaacgcccggcagtctgccgtttggtcaccgaacacgtagacttcctccat-GGTTGGATCGATTGTGATGTG$	kppks1 – PoliC
Kppks1-Pgln1-SH3R	$\tt ctttcttgggaagacctttgtgaagaacgcccggcagtctgccgtttggtcaccgaacacgtagacttcctccat-TGTGAATGTGGTTGTGATACGGGG$	kppks1 – Pffgln1
Kppks1-Pgal1-SH3R	aagacctttgtgaagaacgcccggcagtctgccgtttggtcaccgaacacgtagacttcctccat-GGTTGTACGAGTCCTAGCCTGAT	kppks1 – Pkpgal1
Kppks1-PniaD-SH3R	ttgggaagacctttgtgaagaacgcccggcagtctgccgtttggtcaccgaacacgtagacttcctccat-GGTGAGAGTATGGGATAGGA	kppks1 – PanniaD
Kppks1-PtrpC-SH3R	$\tt ctttgtgaagaacgcccggcagtctgccgtttggtcaccgaacacgtagacttcctccat-ACTAGTGATATTGAAGGAGCATTTTTTGGGC$	kppks1 – PtrpC
Kppks1-RT5F (SH5F)	${\tt gatcagcccttcttttgtttttctgctcgttaagaaccgcacccgaagtacgtcgacactcattcacatttcact-GCTAAGCGAGCGGGAGCTATCG$	kppks1-5' – TniaD
Kppks1-RT3R (SH3R)	$\tt gttgaaacaggttgcagtagttgatccagacaacaccatgatatgccagtcaagtgagtaggttcgtgtggttgc-GAATCGGGAATGCGGCTCCACAG$	kppks1-3' – PoliC
Kppks1-oligo-2.7	GCCTAATACAGATGCTAGACTGGTCGGTCTGTGCACCGGCATAACGGCGGCAGCTGTGTCTTGCGCCGACTCCTTAACCG	$\Delta 3$ bp of <i>kppks1</i> -ORF
Kppks1-SH-hi5F	GGTTGTCGGCAGTGATACGACAAG	kppks1-5'
Kppks1-SH-hi3R	GAGTTAGATTCGAGACACTCCACCAG	kppks1-3'
Kppks1-WT-F1	GGTGAGGCTGTATCTGGTGT	kppks1-ORF
Kppks1-WT-R2	GTCCGAGACGCCGTTGATGCATG	kppks1-ORF
Kppks1-hiR	GCTCCAGCTCTGAAAGCAATGCG	kppks1-ORF
Kppks1-PS1-sF3	GCTGGTAGAGTACGCTATATCCGC	kppks1-5'

Primer name	Sequence (5' → 3')	Features (5'→ 3')
Kppks1-PS1-sF2	GGCATCATGCCCAGGTCGG	kppks1-5'
Kppks1-RNAi-R1	CCTTCTCGGAGTGCAAGTGTGC	kppks1-ORF
Kpphs1-tRNA-PS1R	caggcggataagctgcaccg-TGCATCATCCGTGAATCGAAC	kpphs1 ^{PS1} – tRNA
Kpphs1-tRNA-PS1F	cggtgcagcttatccgcctg-GTTTTAGAGCTAGAAATAGCAAGTTAAAAT	kpphs1 ^{PS1} – sgRNA
T <i>niaD-kpphs1</i> -SH5F	tactcaccacaaagccgtgattcttgatttcgcgtagacgtctgcacatcaacttgcgcatcgcgatcc-GCATTGGATTAATAATTGTTGCTAAGCGAG	kpphs1-5' – TniaD
TniiA-kpphs1-SH5F	${\tt gatcacgttactcaccacaaagccgtgattcttgatttcgcgtagacgtctgcacatcaacttgcgcatcgcgatc-AGATGCTGCTGGCAAGGTTAC}$	kpphs1-5' – TniiA
PgpdA-kpphs1-SH5F	${\tt gatcacgttactcaccacaaagccgtgattcttgatttcgcgtagacgtctgcacatcaacttgcgcatcgcgatc-GTACAGTGACCGGTGACTCTTTC$	kpphs1-5' – PgpdA
TtrpC-kpphs1-SH3R	${\tt gcgcggcgactgcattactattcttacgttgaaggcccgctacacaagcagaagtcgagagccgttagacgcagat-TCGAGTGGAGATGTGGAGTGGGGGGGGGGGGGGGGGGGG$	kpphs1-3' – TtrpC
Tgluc-kpphs1-SH3R	${\tt gcgcggcgactgcattactattcttacgttgaaggcccgctacacaagcagaagtcgagagccgttagacgcagat-ATCTTGTTGGGGGGAAGGGGTTG$	kpphs1-3' – Tgluc
T <i>tub1-kpphs1</i> -SH3R	$\verb+gcgcggcgactgcattactattcttacgttgaaggcccgctacacaagcagaagtcgagagccgttagacgcagat-ggatccAGACAGCCAATTGAAACG$	kpphs1-3' – Ttub1
Kpphs1-RT5F (SH5F)	tcacgttactcaccaccaaagccgtgattcttgatttcgcgtagacgtctgcacatcaacttgcgcatcgcgatc-GCTAAGCGAGCGGGAGCTATCG	kppks1-5' – TniaD
Kpphs1-RT3R (SH3R)	cgcggcgactgcattactattcttacgttgaaggcccgctacacaagcagaagtcgagagccgttagacgcagat-GAATCGGGAATGCGGCTCCACAG	kppks1-3' – PoliC
Kpphs1-oligo-1	ACGTATATAAACGCTAATACGGTGCAGCTTATCCGCCTTAAGCTGTCATCGGCCCTGCCTG	STOP in kpphs1-ORF
Kpphs1-hi5F	GCGAGGTTCTGGTAGTGCAGCTG	kpphs1-5'
Kpphs1-SH-hi5F	GGTGCTAAGCTTTGCCAGCCTCG	kpphs1-5'
<i>Kpphs1</i> -hi3R	GCGCTCTGACATTAGCCAGTCTCC	kpphs1-3'
Kpphs1-WT-F	GTTCGATGTACCTGCCGAGGAGTTG	kpphs1-ORF
Kpphs1-WT-R	CTCGGCTGCACTAGCAGCATCATC	kpphs1-ORF
Kpura3-AMA-PS3-F	$\verb"gtccgtgaggacgaaacgagtaagctcgtc-TACACCTCGATCCGTAGTAC-gttttagagctagaaatagcaagttaaa$	HH-dw – PS3 – sgRNA
Kpura3-AMA-PS3-R	gacgagettactcgtttcgtcctcacggactcatcag-TACACC-cggtgatgtctgctcaagcg	HH-up – 6bp-PS3 – P <i>gpdA</i>
TniaD-kpura3-SH5F	ccagacctgcacagatcactcacgtcagtgggaggatcgaccaacatttacacataaggtgtagccgagc-GCATTGGATTAATAATTGTTGCTAAGCGAG	kpura3-5' – TniaD
TniiA-kpura3-SH5F	${\tt tctacgcaccagacctgcacagatcactcacgtcagtgggaggatcgaccaacatttacacataaggtgtagccgagcc-AGATGCTGCTGGCAAGGTTAC}$	kpura3-5' – TniiA
T <i>trpC-kpura3</i> -SH3R	tcatgaatcctactcaaatcatgaaacaatgtgcggataacccaccgaacatgcaactctggccaaagggactggcgt-TCGAGTGGAGATGTGGAGTGGGGGGGGGGGGGGGGGGGG	kpura3-3' – TtrpC
Tgluc-kpura3-SH3R	${\tt catgaatcctactcaaatcatgaaacaatgtgcggataacccaccgaacatgcaactctggccaaagggactggcgt-{\tt ATCTTGTTGGGGGGAAGGGGTTG}$	kpura3-3' – Tgluc
Ttub1-kpura3-SH3R	${\tt atgaatcctactcaaatcatgaaacaatgtgcggataacccaccgaacatgcaactctggccaaagggactggcgt-GGATCCAGACAGCCAATTGAAACG$	kpura3-3' – Ttub1
Kpura3-WT-F2	GAGTGCCGTACCGTTCGCGAAG	kpura3-ORF
Kpura3-WT-R2	CATTCTGGTACTCCTTGACCGC	kpura3-ORF
Kpura3-5U-hi5F	GCGCTCTGAGTAGATTTGGTCTCG	kpura3-5'

Primer name	Sequence (5'→ 3')	Features (5'→ 3')
Kpura3-hi3R	CCATGTCCGCTGACACCATTCG	kpura3-3'
Kpigr1-AMA-PS1F	$\verb"gtccgtgaggacgaaacgagtaagctcgtc-ACCGTACTCTCCGCGTAGAC-gttttagagctagaaatagcaagttaaa$	HH-dw – <i>kpigr1</i> ^{PS1} – sgRNA
Kpigr1-AMA-PS1R	gacgagettactegtttegteeteaeggaeteateag-ACCGTA-eggtgatgtetgeteaageg	HH-up – 6bp- <i>igr1</i> PS1 – PgpdA
Kpigr1-tRNA-PS1F	accgtactctccgcgtagac-GTTTTAGAGCTAGAAATAGCAAGTTAAAAT	kpigr1 ^{PS1} – sgRNA
Kpigr1-tRNA-PS1R	gtctacgcggagagtacggt-TGCATCATCCGTGAATCGAAC	kpigr1 ^{PS1} – tRNA
Kpigr1-5F	$\tt gttgggtaacgccagggttttccccagtcacga-atttaaatgggcccgtttaaacgctagc-CCGCCAGGTTGAACTCATGCTTAC$	pRS426 – MCS – kpigr1
Kpigr1-5R	gtettaagategegaacaagaegtegetee-TACGCGGAGAGTACGGTCCGTT	5R-adapter – kpigr1
Kpigr1-3F	ggtattccaattccgggaacaccacc-GACTGGTCGTCGAGCTAGTCCTG	3R-adapter – kpigr1
Kpigr1-3R	tgtgagcggataacaatttcacacaggaaaca-gggcccgctagcatttaaatgtttaaac-GGTGTCCAGCTCAAAGTGGCGC	pRS426 – MCS – kpigr1
Kpigr1-RF-F1	GCGGTTACCGAAGGATCTTTGCAAG	kpigr1-5'
Kpigr1-RF-R1	GTTCTGTAATCTTCGCTCGTACAACGG	kpigr1-3'
TniaD-kpigr1-SH5F	$\tt ctgccgctcggaacgttccatccggtcctgtctgatccatcc$	kpigr1-5' – TniaD
TtrpC-kpigr1-SH3R	${\tt gtagggcatggcggtgagtgaggctcaacggtgatcgcgatcgat$	kpigr1-3' – TtrpC
TniiA-kpigr1-SH5F	$\tt ctgccgctcggaacgttccatccggtcctgtctgatccatcc$	kpigr1-5' – TniiA
Tgluc-kpigr1-SH3R	${\tt gtagggcatggcggtgagtgaggctcaacggtgatcgcgatcgat$	kpigr1-3' – Tgluc
Ttub1-kpigr1-SH3R	tagggcatggcggtgagtgaggctcaacggtgatcgcgatcgat	kpigr1-3' – Ttub1
Kpigr1-hi5F	GATGGGCCAGGCGTTGTTCATTC	kpigr1
<i>Kpigr1</i> -hi3R	GGCAGCTGCTAGACGAATTAGTGC	kpigr1
Kpigr1-WT-F1	GCCTCTCAAATTCCTCCGCGCAG	kpigr1
Kpigr1-WT-R1	GACTCGTGAAGAAGCAGCCCACAC	kpigr1
Kpigr2-AMA-PS1F	$\verb+gtccgtgaggacgaaacgagtaagctcgtc-AGCTGCTAGTCCATAACTCA-gttttagagctagaaatagcaagttaaa$	HH-dw – <i>kpigr</i> 2 ^{PS1} – sgRNA
Kpigr2-AMA-PS1R	gacgagettactcgtttcgtcetcacggaetcatcag-AGCTGC-cggtgatgtetgetcaageg	HH-up – 6bp- <i>igr</i> 2 ^{PS1} – PgpdA
Kpigr2-tRNA-PS1F	agctgctagtccataactca-GTTTTAGAGCTAGAAATAGCAAGTTAAAAT	<i>kpigr</i> 2 ^{PS1} – sgRNA
Kpigr2-tRNA-PS1R	tgagttatggactagcagct-TGCATCATCCGTGAATCGAAC	kpigr2 ^{PS1} – tRNA
Kpigr2-5F	$\tt gttgggtaacgccagggttttccccagtcacga-ccgcgggtttaaacggtaccatttaaat-{\tt ATGGTCTGCGCCAACGACAAAGAC}$	pRS426 – MCS – kpigr2
Kpigr2-5R	gtcttaagatcgcgaacaagacgtcgctcc-GTTATGGACTAGCAGCTATAGTGAGAGTCG	5R-adapter – kpigr2
Kpigr2-3F	ggtattccaattccattcgggaacaccacc-TCACGGTGATGACTGTCTGACGC	3R-adapter – kpigr2
Kpigr2-3R	tgtgagcggataacaatttcacacaggaaaca-ggtaccccgcggatttaaatgtttaaac-CACTGAGGGTGGTGTTGTCTGCC	pRS426 – MCS – <i>kpigr</i> 2

Primer name	Sequence (5'→ 3')	Features (5'→ 3')
Kpigr2-RF-F1	GCCTGCCAGAGTTCGGATTACCAG	kpigr2-5'
Kpigr2-RF-R1	GACCTGAGCTACAGGCCTCGATCG	kpigr2-3'
TniaD-kpigr2-SH5F	cgaacactaggcgatgccgacaacacaacagagtcaccgtcgactctcactatagctgctagtccataac-GCATTGGATTAATAATTGTTGCTAAGCGAG	kpigr2-5' – TniaD
TtrpC-kpigr2-SH3R	$\tt ttgattgtgcacctacggaaagaactagaaatacatcctgttggccgagctggtgcgtcagacagtcatcaccgtga-TCGAGTGGAGATGTGGAGTGGG$	kpigr2-3' – TtrpC
TniiA-kpigr2-SH5F	cgaacactaggcgatgccgacaacacaacagagtcaccgtcgactctcactatagctgctagtccataac-AGATGCTGCTGGCAAGGTTAC	kpigr2-5' – TniiA
Tgluc-kpigr2-SH3R	$\tt ttgattgtgcacctacggaaagaactagaaatacatcctgttggccgagctggtgcgtcagacagtcatcaccgtga-\tt ATCTTGTTGGGGGGAAGGGGTTG$	kpigr2-3' – Tgluc
Ttub1-kpigr2-SH3R	tgattgtgcacctacggaaagaactagaaatacatcctgttggccgagctggtgcgtcagacagtcatcaccgtga-ggatccAGACAGCCAATTGAAACG	kpigr2-3' – Ttub1
Kpigr2-hi5F	GAGCGATGTCGTCTCGGAAGATTAC	kpigr2
Kpigr2-hi3R	GAGCAGCTAAGGTTGAGGAGCCC	kpigr2
Kpigr2-WT-F1	GGCAACTCAGACGCAATGGAGCC	kpigr2
Kpigr2-WT-R1	CCTGAGCTACAGGCCTCGATCG	kpigr2
PtrpC-3RAM-R2	ggtggtgttccccgaatggaattggaatacc-ttaattaa-GATATTGAAGGAGCATTTTTTGGGCTTG	3R-adapter – Pacl – PtrpC
T <i>bcniiA</i> -5FAM-R	ggagcgacgtcttgttcgcgatcttaagac-ggcgcgcc-CAGATGCTGCTGGCAAGGTTAC	5F-adapter – Ascl – TniiA
TbcniaD-5FAM-R	ggagcgacgtcttgttcgcgatcttaagac-ggcgcgcc-GCATTGGATTAATAATTGTTGCTAAGCGAG	5F-adapter – Ascl – TniaD
TtrpC-3RAM-R	ggtggtgttcccgaatggaattggaatacc-ttaattaa-TCGAGTGGAGATGTGGAGTGGG	3R-adapter – Pacl –TtrpC
Tgluc-3RAM-R	ggtggtgttcccgaatggaattggaatacc-ttaattaa-ATCTTGTTGGGGGGAAGGGGTTG	3R-adapter – Pacl –Tgluc
Ttub-3RAM-R	ggtggtgttccccgaatggaattggaatacc-ttaattaa-AGACAGCCAATTGAAACGTTCTGAC	3R-adapter – Pacl –Ttub1
5F-adapter-F	GCGACGTCTTGTTCGCGATCTTAAG	5F-adapter
3R-adapter-R	GGTGGTGTTCCCGAATGGAATTGGAATAC	3R-adapter
Pkpgal1-PtrpC-F1	caagcccaaaaaatgctccttcaatatc-GTTTGGCGGTAGTGTGGCGGG	PtrpC – kpgal1-5'
Pkpgal1-ogfp-R1	cttacctcacccttggaaaccatgg-TTGTACGAGTCCTAGCCTGATATTG	kpgal1-5'
PffgIn1-PtrpC-F	gcccaaaaagtgctccttcaatgtcactagt-GGCTCCGTAAGCGGAGCAAAGCG	PtrpC – ffgln1-5'
PffgIn1-gfp-R	tacttacctcacccttggaaaccat-TGTGAATGTGGTTGTGATACGGGG	gfp – ffgln1-5'
PffgIn1-sF1	GTCGAAGTATCTTCCCTGTGCGTG	ffgln1-5'
P <i>kpgal1</i> -sF1	ggetcatecetactecgaceteg	kpgal1-5'
PanniaD-PtrpC-F1	caagcccaaaaaatgctccttcaatatc-GATGGCGGGCGCGGCGGTGATTGAG	PtrpC – anniaD-5'
PanniaD-ogfp-R1	cttacctcacccttggaaaccatgg-TGAGAGTATGGGATAGGAAAATAATATAGAG	gfp – anniaD-5'
PanniaD-sF1	GCAGTGACTGTACACTATGAGCGG	anniaD-5'

Primer name	Sequence (5' + 3')	Features (5'→ 3')
Kpwcl1-PoliC-F	ccatcacaatcgatccaacc-ATGAACGGCATGTCGAATATGTAC	PoliC – kpwcl1
Kpwcl1-gfp-R	tacttacctcacccttggaaaccat-TGTAGGTAACACGTCAGATTGAGG	Gfp – linker /∆stop – kpwcl1
Kpwcl1-OGCGc-R	cgttcgggatcttgcaggccgggcg-TGTAGGTAACACGTCAGATTGAGG	Linker – ∆stop – <i>kpwcl1</i>
Kpwcl1-PgpdA-F	tgactaacagctacagatctaagctt-ATGAACGGCATGTCGAATATGTAC	PgpdA – Ncol – kpwcl1
Kpwcl2-gfp-F	cttgggaatggatgaactttacaaa-ATGGATCCTTACAATCAAAACCCTG	Gfp (∆stop) – kpwcl2
Kpwcl2-AGNTn-F	aggcggttcaggcggaggtggatct-ATGGATCCTTACAATCAAAACCCTG	Linker – <i>kpwcl</i> 2
Kpwcl2-TtrpC-R	ttgttgacatggagctattaaatca-TCAATGGCTACTACCAGTTGAGTG	TtrpC – kpwcl2
Kpwcl2-Tgluc-R	taatcatacatcttatctacatacg-TCAATGGCTACTACCAGTTGAGTG	Tgluc – kpwcl2
PgpdA-S-PtrpC-F	gcccaaaaaatgctccttcaatatc-actagt-ACAGTGACCGGTGACTCTT	PtrpC – Spel – PgpdA
PgpdA-ATG-R	CATAAGCTTAGATCTGTAGCTGTTAGTC	PgpdA
PgpdA-11aalinker-R	gagcggccgctgagctccatgg-AAGCTTAGATCTGTAGCTGTTAGTC	Linker gfpN – Ncol – PgpdA
MCh-Ncol-PgpdA-F	cttacctcgcccttgcttaccatgg-AAGCTTAGATCTGTAGCTGTTAGTC	mch – Ncol – PgpdA
Gfp-Ncol-PgpdA-F	cttacctcacccttggaaaccatgg-AAGCTTAGATCTGTAGCTGTTAGTC	ogfp – Ncol – PgpdA
Nptll-PtrpC-F1	acttacctattctacctaagcatctc-ATGATTGAACAAGATGGATTGCAC	PtrpC – nptll
Nptll-TniaD-R1	tgatgctttggtttagggttaggccc-TCAGAAGAACTCGTCAAGAAGGCG	TniaD – nptll
Bar-PtrpC-F1	acttacctattctacctaagcatctc-ATGAGCCCAGAACGACGCCCGG	PtrpC – bar
Bar-TniaD-R1	tgatgctttggtttagggttaggccc-CTAAATCTCGGTGACGGGCAGG	TniaD – bar
Sur-PtrpC-F1	acttacctattctacctaagcatctc-ATGCTTCGTACTGTTGGCCGCAAA	PtrpC – sur
Sur-TniaD-R1	tgatgctttggtttagggttaggccc-TTAACCGTGCAGGCCATTCGTCCT	TniaD – sur
PgpdA-pRS436-5F	gccagggttttccccagtcacgaccgcg-GTACAGTGACCGGTGACTCTTTC	pRS426-5F – PgpdA
TniaD-Tgluc-F	caaccccttccccccaacaaga-ttaattaa-GCATTGGATTAATAATTGTTGCTAAG	Tgluc – Pacl – TniaD
PoliC-pRS426-3R	gataacaatttcacacaggaaacagc-CGAATCGGGAATGCGGCTCCACAG	pRS426-3F – PoliC
Tgluc-R1	GATCTTGTTGGGGGGAAGGGGTTGTCAAATC	Tgluc
pRS426-5F-REV	CGTCGTGACTGGGAAAACCCTGGCGTTAC	pRS426
pRS426-3R-FOR	GCTGTTTCCTGTGTGAAATTGTTATCCGC	pRS426
pRS426-s3R2	CATTAATGCAGCTGGCACGACAGG	pRS426
pRS426-s5F2	GTAGCGGTCACGCTGCGCGTAACC	pRS426
pFC334-F1	GGTCATAGCTGTTTCCGCTGA	pFC334

Primer name	Sequence (5'→ 3')	Features (5'→ 3')
pFC334-R1	TGATTCTGCTGTCTCGGCTG	pFC334
PgpdA-sF1	GTTGACAAGGTCGTTGCGTCAG	PgpdA
PafU3-sF1	GCTTGAGGTTAGCGCACTCGCTAG	PafU3
Pact1-sF1	GCGGCCCACATTCAAACTTCGTG	Pact1
PoliC-sF2	GGGAGACGTATTTAGGTGCTAGGG	PoliC
Ptef1-sR1	CGTTCGAGAGCATGATCAGCAC	Ptef1
P <i>trpC</i> -hiR	GTGCTCACCGCCTGGACGACTAAACC	P <i>trp</i> C
T <i>niiA</i> -hiF	GTCATGCGTAGGGCACCGGTAGG	TniiA
T <i>niaD</i> -hiF	GGTGCCAGATGTATCAGTGAGTCTG	TniaD
T <i>gluc</i> -hiF	CATACGTACATCTGATTTGACAACC	Tgluc
T <i>tub1</i> -hiF	CCACTTCCATACATGCAACACTGC	Ttub1
T <i>trpC</i> -hiF	ACCCAGAATGCACAGGTACACTTG	T <i>trpC</i>
<i>Hph</i> -hiF	GTCTGGACCGATGGCTGTGTAGAAG	hph
<i>Hph</i> -hiR	GACAGACGTCGCGGTGAGTTCAG	hph
<i>Nat1</i> -hiF	CGGCGAGCAGGCGCTCTACATGAGC	nat1
<i>Nat1</i> -hiR	GTACCGGTAAGCCGTGTCGAG	nat1
<i>Nptll-</i> hiR	GCCGAATAGCCTCTCCACCCAAG	nptll
<i>Nptll</i> -hiF	GCCTTCTATCGCCTTCTTGACGAG	nptll
<i>Bar</i> -hiR	GAAGTTGACCGTGCTTGTCTCGATG	bar
<i>Bar</i> -hiF	GAACTGGCATGACGTGGGTTTCTG	bar
<i>Sur</i> -hiR	GCTTGAGAGTCGAGATGGTTCGTG	sur
Sur-hiF	GCACGAGTTCATCACGTTTGATGC	sur

Sequence $(5' \rightarrow 3')$: lowercase letters – 5' overhangs for cloning (NEBuilder HiFi assembly or recombination in yeast) and for mediating homologous recombination in *K. petricola*; uppercase letters – 3' part of oligonucleotides binding to the template. Parts of the oligonucleotides are separated by hyphen and are further described as features. Names of two-part oligonucleotides start with the binding site, followed by the 5' overhang.

Supplementary Table 3. Plasmids cloned in this study.

Plasmid name (size) [ID]	Entry plasmid	Amplicon 1	Amplicon 2	Amplicon 3	Method
pAMA/tRNA-<i>kppks1</i> ^{PS2} (16.449 kb) [pEC0122]	pFC332 / Pacl	kppks1^{PS2} tRNA-A (0.589 kb) primers: pFC334-F1/ <i>kppks1</i> -tRNA-PS2R template: pFC902	<i>kppks1</i> ^{PS2} tRNA-B (0.427 kb) primers: <i>kppks1</i> -tRNA-PS2F/pFC334-R1 template: pFC902	n/a	HiFi
pAMA/tRNA-<i>kpphs1</i> ^{PS1} (16.449 kb) [pEC0123]	pFC332/ Pacl	kpphs1^{Ps1} tRNA-A (0.589 kb) primers: pFC334-F1/ <i>kpphs1</i> -tRNA-PS2R template: pFC902	<i>kpphs1</i> ^{PS1} tRNA-B (0.427 kb) primers: <i>kpphs1</i> -tRNA-PS2F/pFC334-R1 template: pFC902	n/a	HiFi
pAMA/tRNA- <i>kppks1</i> ^{PS2} - <i>kpphs1</i> ^{PS1} (16.670 kb) [pEC0124]	pFC332/ Pacl	kppks1 ^{PS2} tRNA-A (0.589 kb) primers: pFC334-F1/ <i>kppks1</i> -tRNA-PS2R template: pFC902	<i>kppks1</i> ^{Ps2} / <i>phs1</i> ^{Ps1} tRNA-C (0.191 kb) primers: <i>pks1</i> -tRNA-PS2F/ <i>phs1</i> -tRNA-PS1R template: pFC902	kpphs1 ^{PS1} tRNA-B (0.427 kb) primers: <i>kpphs1</i> -tRNA-PS2F/pFC334-R1 template: pFC902	HiFi
pNAH-GGG (11.022 kb) [pEC0046]	pNAH-OGG / Ncol + Spel	PgpdA (0.840 kb) primers: P <i>gpdA-</i> P <i>trpC</i> -F/ <i>mCh-</i> P <i>gpdA-</i> R template: pHR- <i>gfp</i> -natR	n/a	n/a	YRC
pNAN-GGG (10.555 kb) [pEC0120]	pNAN-OGG / Ncol + Spel	PgpdA (0.871 kb) primers: P <i>gpdA-</i> P <i>trpC</i> -F <i>/gfp</i> -P <i>gpdA</i> -F template: pHR- <i>gfp</i> -natR	n/a	n/a	YRC
pNAH-GCT (11.217 kb) [pEC0047]	pNAH-OCT / Ncol + Spel	PgpdA (0.840 kb) primers: P <i>gpdA</i> -P <i>trpC</i> -F/ <i>gfp</i> -P <i>gpdA</i> -R template: pHR- <i>gfp</i> -natR	n/a	n/a	YRC
pNAN-GCT (17.327 kb) [pEC0121]	pNAN-OCT / Ncol + Spel	PgpdA (0.871 kb) primers: PgpdA-PtrpC-F/mCh-PgpdA-F template: pHR-gfp-natR	n/a	n/a	YRC
pNDG-OGG (10.851 kb) [pEC0119]	p NDN-OGG / Spel + Kpnl	nptll (0.847 kb) primers: <i>nptll-PtrpC</i> -F1/-T <i>niaD</i> -R1 template: pKS-Gen	n/a	n/a	YRC
pNDP-OGG (10.608 kb) [pEC0127]	pNDN-OGG / Spel + Kpnl	<i>bar</i> (0.594 kb) primers: <i>bar</i> -P <i>trpC</i> -F1/-T <i>niaD</i> -R1 template: pCB1524	n/a	n/a	YRC
pNDS-OGG (12.530 kb) [pEC0128]	pNDN-OGG / Spel + Kpnl	<i>sur</i> (2.475 kb) primers: <i>sur</i> -P <i>trpC</i> -F1/-T <i>niaD</i> -R1 template: pCB1532	n/a	n/a	YRC
pH-GGG (9.483 kb) [pEC0188]	pRS426 ^{∆∧col} / EcoRI + Xhol	[(PgpdA::gfp::Tgluc)] (2.182 kb) primers: PgpdA-pRS426-5F/Tgluc-R1 template: pNAH-GGG	[(PtrpC::hph::TniaD)] (1.845 kb) primers: T <i>niaD</i> -Tgluc-F/PoliC-pRS426-3R template: pNDH-OGG	n/a	YRC
pN-GGG (9.015 kb) [pEC0189]	p RS426^{∆∧col}/ EcoRI + Xhol	[(PgpdA::gfp::Tgluc)] (2.182 kb) primers: PgpdA-pRS426-5F/Tgluc-R1 template: pNAH-GGG	[(PtrpC::nat1::TniaD)] (1.345 kb) primers: T <i>niaD</i> -T <i>gluc</i> -F/PoliC-pRS426-3R template: pNDN-OGG	n/a	YRC

Plasmid name (size) [ID]	Entry plasmid	Amplicon 1	Amplicon 2	Amplicon 3	Method
pG-GGG (9.240 kb) [pEC0190]	pRS426 ^{∆∧col} / EcoRI + Xhol	[(PgpdA::gfp::Tgluc)] (2.182 kb) primers: PgpdA-pRS426-5F/Tgluc-R1 template: pNAH-GGG	[(PtrpC::nptll::TniaD)] (1.570 kb) primers: T <i>niaD</i> -Tgluc-F/PoliC-pRS426-3R template: pNDG-OGG	n/a	YRC
pP-GGG (8.997 kb) [pEC0191]	pRS426 ^{∆∧col} / <i>Eco</i> RI + Xhol	[(PgpdA::gfp::Tgluc)] (2.182 kb) primers: PgpdA-pRS426-5F/Tgluc-R1 template: pNAH-GGG	[(P<i>trpC::bar::TniaD</i>)] (1.327 kb) primers: T <i>niaD-Tgluc-F/PoliC</i> -pRS426-3R template: pNDP-OGG	n/a	YRC
pS-GGG (10.932 kb) [pEC0192]	pRS426^{∆Ncol}/ EcoRI + Xhol	[(PgpdA::gfp::Tgluc)] (2.182 kb) primers: PgpdA-pRS426-5F/Tgluc-R1 template: pNAH-GGG	[(PtrpC::sur::TniaD)] (3.262 kb) primers: T <i>niaD</i> -Tgluc-F/PoliC-pRS426-3R template: pNDS-OGG	n/a	YRC
pAMA/ribo-<i>kppks1</i> ^{PS4} (16.506 kb) [pEC0115]	pFC332 / Pacl	kppks1 ^{Ps4} ribo-A (0.570 kb) primers: pFC334-F1/ <i>kppks1</i> -AMA-PS4R template: pFC334	<i>kppks1</i> ^{PS4} ribo-B (0.463 kb) primers: <i>kppks1</i> -AMA-PS4F/pFC334-R1 template: pFC334	n/a	HiFi
pNAH-QGT (11.161 kb) [pEC0104]	pNAH-AGT/ Ncol + Spel	PffgIn1 (0.889 kb) primers: PffgIn1-PtrpC-F/PffgIn1-gfp-R template: <i>F. fujikuroi</i> DNA	n/a	n/a	YRC
pNAH_^G<i>kpwcl1-gfp</i>^G (14.281 kb) [pEC0043]	pNAH-OGG/ Ncol + Spel	PgpdA (0.840 kb) primers: P <i>gpdA-PtrpC</i> -F/P <i>gpdA</i> -ATG-R template: pHR- <i>gfp</i> -natR	kpwcl1 (3.266 kb) primers: <i>kpwcl1-PgpdA-F/kpwcl1-gfp-</i> R template: <i>K. petricola</i> DNA	n/a	YRC
pNAH_^G<i>kpwcl1-mch</i>^T (14.478 kb) [pEC0044]	pNAH-OCT/ Ncol + Spel	PgpdA (0.840 kb) primers: PgpdA-PtrpC-F/PgpdA-ATG-R template: pHR-gfp-natR	kpwcl1 (3.266 kb) primers: <i>kpwcl1-PgpdA-F/kpwcl1-gfp-</i> R template: <i>K. petricola</i> DNA	n/a	YRC
pNAH_^G<i>kpwcl1-gfpC</i>^G (13.809 kb) [pEC0045]	pNAH-OGCGc / Ncol + Spel	PgpdA (0.840 kb) primers: P <i>gpdA-PtrpC</i> -F/P <i>gpdA</i> -ATG-R template: pHR- <i>gfp</i> -natR	kpwcl1 (3.266 kb) primers: <i>kpwcl1</i> -P <i>gpdA</i> -F/-OGCGc-R template: <i>K. petricola</i> DNA	n/a	YRC
pNDN_^o<i>gfp-kpwcl2</i>^G (12.168 kb) [pEC0129]	p NDN-OGG / Notl	kpwcl2 (1.554 kb) primers: <i>kpwcl2-gfp</i> -F/ <i>kpwcl2</i> -T <i>gluc</i> -R template: <i>K. petricola</i> DNA	n/a	n/a	YRC
pNDN_^A<i>gfpN-kpwcl2</i>^T (12.090 kb) [pEC0038]	pNDN-AGNTn/ Notl	kpwcl2 (1.544 kb) primers: <i>kpwcl</i> 2-AGNTn-F/ <i>kpwcl</i> 2-T <i>trpC</i> -R template: <i>K. petricola</i> DNA	n/a	n/a	YRC
pNDN_^GgfpN-kpwcl2T (12.111 kb) [pEC0130]	pNDN_ ^A gfpN- kpwcl2 ^T / Spel	PgpdA (0.840 kb) primers: PgpdA- Spel-PtrpC-F/PgpdA-ATG-R template: pHR-gfp-natR	n/a	n/a	YRC
pNDN-GGNTn (10.569 kb) [pEC0131]	pNDN-AGNTn / Ncol + Spel	PgpdA (0.840 kb) primers: PgpdA-SpeI-PtrpC-F/PgpdA-ATG-R template: pHR-gfp-natR	n/a	n/a	YRC
pNDN-GGNTc (10.548 kb) [pEC0200]	pNDN-AGNTc/ Ncol + Spel	PgpdA (0.927 kb) primers: P <i>gpdA-Spe</i> I-P <i>trpC</i> -F/-11aalinker-R template: pHR- <i>gfp</i> -natR	n/a	n/a	YRC

Plasmid name (size) [ID]	Entry plasmid	Amplicon 1	Amplicon 2	Amplicon 3	Method
pIGR1H-AGT (11.704 kb) [pEC0077]	pRS426^{∆Ncol}/ EcoRI + Xhol	[(hygR)–(Pact1::gfp::TtrpC)] (4.039 kb) primers: T <i>niaD</i> -5FAMR/TtrpC-3RAMR template: pNDH-AGT	kpigr1 5' flank (1.185 kb) primers: <i>kpigr1-</i> 5F/ <i>kpigr1-</i> 5R template: <i>K. petricola</i> DNA	kpigr1 3' flank (0.848 kb) primers: <i>kpigr1-</i> 3F/ <i>kpigr1-</i> 3R template: <i>K. petricola</i> DNA	YRC
pIGR2H-AGT (12.179 kb) [pEC0064]	pRS426^{∆Ncol}/ EcoRI + Xhol	[(hygR)–(Pact1::gfp::TtrpC)] (4.039 kb) primers: T <i>niaD</i> -5FAMR/TtrpC-3RAMR template: pNDH-AGT	kpigr2 5' flank (0.917 kb) primers: <i>kpigr2-5F/kpigr2-5</i> R template: <i>K. petricola</i> DNA	kpigr2 3' flank (1.592 kb) primers: <i>kpigr2</i> -3F/ <i>igr2</i> -3R template: <i>K. petricola</i> DNA	YRC
pIGR2H-LGT (11.986 kb) [pEC0067]	pIGR2H-AGT/ Spel + Ncol	P<i>kpgal1</i> (0.710 kb) primers: P <i>kpgal1-PtrpC</i> -F1/P <i>kpgal1-ogfp</i> -R1 template: <i>K. petricola</i> DNA	n/a	n/a	YRC
pIGR2H-NGT (12.588 kb) [pEC0068]	pIGR2H-AGT / Spel + Ncol	PanniaD (1.318 kb) primers: PanniaD-PtrpC-F1/-ogfp-R1 template: <i>A. nidulans</i> DNA	n/a	n/a	YRC
pIGR1N-OCT (11.526 kb) [pEC0089]	pRS426^{∆Ncol}/ EcoRI + Xhol	[(natR)–(PoliC::mch::Ttub1)] (3.859 kb) primers: TniiA-5FAMR/Ttub1-3RAMR template: pNAN-OCT	kpigr1 5' flank (1.185 kb) primers: <i>kpigr1-</i> 5F/ <i>kpigr1-</i> 5R template: <i>K. petricola</i> DNA	kpigr1 3' flank (0.848 kb) primers: <i>kpigr1-</i> 3F/ <i>kpigr1-</i> 3R template: <i>K. petricola</i> DNA	YRC
pIGR2N-OCT (12.001 kb) [pEC0090]	pRS426^{∆Ncol}/ EcoRI + Xhol	[(natR)–(PoliC::mch::Ttub1)] (3.859 kb) primers: TniiA-5FAMR/Ttub1-3RAMR template: pNAN-OCT	kpigr2 5' flank (0.917 kb) primers: <i>kpigr2-5F/kpigr2-5</i> R template: <i>K. petricola</i> DNA	kpigr2 3' flank (1.592 kb) primers: <i>kpigr2-</i> 3F/ <i>kpigr2-</i> 3R template: <i>K. petricola</i> DNA	YRC
pAMA/ribo-<i>kpigr1</i> ^{PS1} (16.506 kb) [pEC0058]	pFC332 / Pacl	kpigr1^{PS1} ribo-A (0.570 kb) primers: pFC334-F1/ <i>kpigr1</i> -AMA-PSR template: pFC334	kpigr1^{PS1} ribo-B (0.463 kb) primers: <i>kpigr1</i> -AMA-PSF/pFC334-R1 template: pFC334	n/a	HiFi
pAMA/ribo-<i>kpigr</i>2^{PS1} (16.506 kb) [pEC0059]	pFC332 / Pacl	kpigr2^{PS1} ribo-A (0.570 kb) primers: pFC334-F1/ <i>kpigr</i> 2-AMA-PSR template: pFC334	kpigr2^{PS1} ribo-B (0.463 kb) primers: <i>kpigr2</i> -AMA-PSF/pFC334-R1 template: pFC334	n/a	HiFi
pAMA/tRNA-<i>kpigr1</i> ^{PS1} -<i>kpigr2</i> ^{PS1} (16.670 kb) [pEC0194]	pFC332 / Pacl	kpigr1 ^{PS1} tRNA-A (0.589 kb) primers: pFC334-F1/ <i>kpigr1</i> -tRNA-PS1R template: pFC902	kpigr1^{PS1}/kpigr2^{PS1} tRNA-C (0.191 kb) primers: <i>kpigr1</i> -tRNA-PS1F/ <i>igr2</i> -tRNA-PS1R template: pFC902	kpigr2 Ps2 tRNA-B (0.427 kb) primers: <i>kpigr2</i> -tRNA-PS1F/pFC334-R1 template: pFC902	HiFi
pIGR1H (9.444 kb) [pEC0087]	pRS426 ^{∆Ncol} / <i>Eco</i> RI + <i>Xho</i> l	[(PtrpC::hph::TniaD)] (1.777 kb) primers: PtrpC-3RAMR2/TniaD-5FAMR template: pNDH-AGT	kpigr1 5' flank (1.185 kb) primers: <i>kpigr1-</i> 5F/ <i>kpigr1-</i> 5R template: <i>K. petricola</i> DNA	kpigr1 3' flank (0.848 kb) primers: <i>kpigr1-</i> 3F/ <i>kpigr1-</i> 3R template: <i>K. petricola</i> DNA	YRC
pIGR2H (9.919 kb) [pEC0088]	pRS426^{∆Ncol}/ EcoRI + Xhol	[(PtrpC::hph::TniaD)] (1.777 kb) primers: PtrpC-3RAMR2/TniaD-5FAMR template: pNDH-AGT	kpigr2 5' flank (0.917 kb) primers: <i>kpigr2-5F/kpigr2-5</i> R template: <i>K. petricola</i> DNA	kpigr2 3' flank (1.592 kb) primers: <i>kpigr2-</i> 3F/ <i>kpigr2-</i> 3R template: <i>K. petricola</i> DNA	YRC
pIGR1N (8.976 kb) [pEC0208]	pIGR1H / Pacl + Ascl	[(PtrpC::nat1::TniaD)] (1.385 kb) primers: PtrpC-3RAMR2/TniaD-5FAMR template: pNDN-OGG	n/a	n/a	YRC
pIGR2N (9.451 kb) [pEC0209]	pIGR2H / Pacl + Ascl	[(PtrpC::nat1::TniaD)] (1.385 kb) primers: PtrpC-3RAMR2/TniaD-5FAMR template: pNDN-OGG	n/a	n/a	YRC

Plasmid name (size) [ID]	Entry plasmid	Amplicon 1	Amplicon 2	Amplicon 3	Method
pIGR1G (9.201 kb) [pEC0175]	pIGR1H / Pacl + Ascl	[(PtrpC::nptll::TniaD)] (1.610 kb) primers: PtrpC-3RAMR2/TniaD-5FAMR template: pNDG-OGG	n/a	n/a	YRC
pIGR2G (9.676 kb) [pEC0176]	pIGR2H / Pacl + Ascl	[(PtrpC::nptll::TniaD)] (1.610 kb) primers: PtrpC-3RAMR2/TniaD-5FAMR template: pNDG-OGG	n/a	n/a	YRC
pIGR1P (8.958 kb) [pEC0177]	pIGR1H / Pacl + Ascl	[(PtrpC::bar::TniaD)] (1.367 kb) primers: PtrpC-3RAMR2/TniaD-5FAMR template: pNDP-OGG	n/a	n/a	YRC
pIGR2P (9.433 kb) [pEC0178]	pIGR2H / Pacl + Ascl	[(P<i>trpC::bar::TniaD</i>)] (1.367 kb) primers: P <i>trpC</i> -3RAMR2/T <i>niaD</i> -5FAMR template: pNDP-OGG	n/a	n/a	YRC
pIGR1S (10.893 kb) [pEC0179]	pIGR1H / Pacl + Ascl	[(PtrpC::sur::TniaD)] (3.302 kb) primers: PtrpC-3RAMR2/TniaD-5FAMR template: pNDS-OGG	n/a	n/a	YRC
pIGR2S (11.368 kb) pEC0180]	pIGR2H / Pacl + Ascl	[(PtrpC::sur::TniaD)] (3.302 kb) primers: PtrpC-3RAMR2/TniaD-5FAMR template: pNDS-OGG	n/a	n/a	YRC
pAMA/ribo-<i>kpura3</i> ^{PS3} (16.506 kb) [pEC0099]	pFC332 / Pacl	<i>kpura3</i> ^{PS3} ribo-A (0.570 kb) primers: pFC334-F1/ <i>kpura3</i> -AMA-PS3R template: pFC334	<i>kpura3</i> ^{PS3} ribo-B (0.463 kb) primers: <i>kpura3</i> -AMA-PS3F/pFC334-R1 template: pFC334	n/a	HiFi

Plasmids were generated via yeast recombination cloning (YRC) or NEBuilder HiFi DNA assembly (HiFi).

Plasmids used as entry plasmids in assembly or as templates for amplification of DNA fragments were cloned in this study (Supplementary Table 3) or were published previously: pFC332, pFC334 (Nødvig et al., 2015); pFC902 (Nødvig et al., 2018); pRS426^{ΔNcoI}, pNAN-OCT, pNAH-OGG, pNAN-OGG, pNAH-OCT, pNDH-AGT, pNDN-AGT, pNAH-AGT pNAH-OGG, pNAH-OGCGc, pNDN-AGNTn, pNDN-AGNTc, pNDH-OGG, pNDN-OGG (Schumacher, 2012); pHR-*gfp*-natR (Voigt et al., 2020); pKS-Gen [*nptII*] (Bluhm et al., 2008); pCB1524 [*bar*], pCB1532 [*sur*] (Sweigard et al., 1997; McCluskey et al., 2010).

Supplementary Table 4. Transformations of *K. petricola* protoplasts carried out in this study.

Strain name	GMO ID	Entry	Donor DNA with SH/LH flanks	Donor DNA with SH/LH flanks	CRISPR/Cas9 plasmid
pks1– (1A)	KP-0199	WT:A95	n/a	n/a	pAMA/tRNA-<i>kppks1</i> ^{PS2} (circular)
pks1– (1B)	KP-0200	WT:A95	pks1-oligo-2.7 (0.080 kb) (single-stranded oligonucleotide with 3-bp-long deletion)	n/a	pAMA/tRNA-<i>kppks1</i> ^{PS2} (circular)
∆ <i>pks1</i> [N] (1C)	KP-0181	WT:A95	[(TniaD::nat1::PtrpC)] ^{Apks1} (1.473 kb) primers: <i>kppks1</i> -RT5F/-RT3R template: pNDN-OGG	n/a	pAMA/tRNA-<i>kppks1</i> ^{PS2} (circular)
Δ <i>pks1</i> [N] (1D) negative control	KP-0070	WT:A95	[(T<i>niaD</i>::<i>nat1</i>::P<i>trpC)]^{Apks1}</i> (1.473 kb) primers: <i>kppks1</i>-RT5F/-RT3R template: pNDN-OGG	n/a	n/a
Δ <i>pks1</i> [N] (RC1) positive control	KP-0072	WT:A95	[(TniaD::nat1::PtrpC)] ^{Δpks1} (1.473 kb) primers: <i>kppks1</i> -RT5F/-RT3R template: pNDN-OGG	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
pks1–/phs1– (2A)	KP-0201	pks1–	n/a	n/a	pAMA/tRNA- <i>kpphs1</i> ^{PS1} (circular)
pks1–/phs1– (2B)	KP-0202	pks1–	kpphs1-oligo-1 (0.080 kb) (single-stranded oligonucleotide with inserted stop codon)	n/a	pAMA/tRNA-<i>kpphs1</i> ^{PS1} (circular)
pks1–/Δphs1 [H] (2C)	KP-0188	pks1–	[(T<i>niaD</i>::<i>hph</i>::<i>PtrpC)]</i> ^{Δphs1} (1.946 kb) primers: <i>kpphs</i> 1-RT5F/-RT3R template: pNDH-OGG	n/a	pAMA/tRNA-<i>kpphs1</i> ^{PS1} (circular)
<i>pks1–\∆phs1</i> [H] (2D) negative control	KP-0203	pks1–	[(T<i>niaD</i>::<i>hph</i>::<i>PtrpC)]</i> ^{Δphs1} (1.946 kb) primers: <i>kpphs</i> 1-RT5F/-RT3R template: pNDH-OGG	n/a	n/a
<i>pks1–</i> /Δ <i>phs1</i> [H] (RC2) positive control	KP-0187	pks1–	[(T<i>niaD</i>::<i>hph</i>::<i>PtrpC)]</i> ^{Δphs1} (1.946 kb) primers: <i>kpphs1</i> -RT5F/-RT3R template: pNDH-OGG	n/a	pAMA/ribo-<i>kpphs1</i> ^{PS1} (circular)
pks1–/phs1– (3A)	KP-0204	WT:A95	n/a	n/a	pAMA/tRNA- <i>kppks1</i> ^{PS2} - kpphs1 ^{PS1} (circular)

Strain name	GMO ID	Entry	Donor DNA with SH/LH flanks	Donor DNA with SH/LH flanks	CRISPR/Cas9 plasmid
pks1–/phs1– (3B)	KP-0205	WT:A95	<i>kppks1-oligo-2.7</i> (0.080 kb) (single-stranded oligonucleotide with 3-bp-long deletion)	kpphs1-oligo-1 (0.080 kb) (single-stranded oligonucleotide with inserted stop codon)	pAMA/tRNA- <i>kppks1</i> ^{PS2} - <i>kpphs1</i> ^{PS1} (circular)
Δpks1/Δphs1 [N/H] (3C)	KP-0193	WT:A95	[(T<i>niaD</i>::<i>nat1</i>::P<i>trpC</i>)]^{Δpks1} (1.473 kb) primers: <i>kppks1</i>-RT5F/-RT3R template: pNDN-OGG	[(T <i>niaD::hph::PtrpC)</i>] ^{Δphs1} (1.946 kb) primers: <i>kpphs1</i> -RT5F/-RT3R template: pNDH-OGG	pAMA/tRNA- <i>kppks1</i> ^{PS2} - <i>kpphs1</i> ^{PS1} (circular)
Δpks1/Δphs1 [N/H] (3D) negative control	KP-0082	WT:A95	[(T<i>niaD</i>::<i>nat1</i>::P<i>trpC</i>)]^{Δpks1} (1.473 kb) primers: <i>kppks1</i>-RT5F/-RT3R template: pNDN-OGG	[(T<i>niaD</i>::<i>hph</i>::P<i>trpC</i>)]^{Δphs1} (1.946 kb) primers: <i>kpphs1</i>-RT5F/-RT3R template: pNDH-OGG	n/a
Δpks1/Δphs1 [N/H] (RC3) positive control	KP-0083	WT:A95	[(T<i>niaD</i>::<i>nat1</i>::P<i>trpC</i>)]^{Δpks1} (1.473 kb) primers: <i>kppks1</i>-RT5F/-RT3R template: pNDN-OGG	[(T<i>niaD</i>::<i>hph</i>::P<i>trpC)]</i> ^{Δphs1} (1.946 kb) primers: <i>kpphs1</i> -RT5F/-RT3R template: pNDH-OGG	pAMA/ribo- <i>kppk</i> s1 ^{PS2} pAMA/ribo- <i>kpphs1</i> PS1 (circular)
∆pks1 [H-AGT]	KP-0115	WT:A95	[(hygR)–(Pact1::gfp::TtrpC)] ^{Δpks1} (4.183 kb) primers: T <i>niaD-pks1</i> -SH5F/T <i>trpC-pks1</i> -SH3R template: pIGR2H-AGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
∆pks1 [H-GGG]	KP-0116	WT:A95	[(hygR)–(P<i>gpdA</i>::<i>gfp</i>::T<i>gluc)]^{Δpks1}</i> (4.316 kb) primers: T<i>niiA-pks1</i>-SH5F/T<i>gluc-pks1</i>-SH3R template: pNAH-GGG	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
∆pks1 [H-OGG]	KP-0117	WT:A95	[(hygR)–(PoliC::gfp::Tgluc)] ^{Δpks1} (4.053 kb) primers: T <i>niaD-pks1</i> -SH5F/T <i>gluc-pks1</i> -SH3R template: pNDH-OGG	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
∆pks1 [H-QGT]	KP-0119	WT:A95	[(hygR)–(PgIn1::gfp::TtrpC)] ^{Δpks1} (4.456 kb) primers: T <i>niiA-pks1</i> -SH5F/T <i>trpC-pks1</i> -SH3R template: pNAH-QGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
∆pks1 [H-LGT]	KP-0120	WT:A95	[(hygR)–(P<i>gal1</i>::<i>gfp</i>::T<i>trpC</i>)]^{Δpks1} (3.984 kb) primers: T<i>niaD-pks1</i>-SH5F/T<i>trpC-pks1</i>-SH3R template: pIGR2H-LGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
∆pks1 [H-NGT]	KP-0121	WT:A95	[(hygR)–(PniaD::gfp::TtrpC)] ^{Δpks1} (4.592 kb) primers: TniaD-pks1-SH5F/TtrpC-pks1-SH3R template: pIGR2H-NGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
phs1–/Pact1::pks1 [H]	KP-0141	phs1–	[(hygR)–(Pact1)] ^{ΔPpks1} (2.769 kb) primers: T <i>niaD-pks1</i> -SH5F/ <i>pks1</i> -Pact1-SH3R template: pIGR2H-AGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS4} (circular)
phs1–/PgpdA::pks1 [H]	KP-0142	phs1–	[(hygR)–(PgpdA)] ^{ΔPpks1} (3.035 kb) primers: T <i>niiA-pks1</i> -SH5F/ <i>pks1</i> -PgpdA-SH3R template: pNAH-GGG	n/a	pAMA/ribo-<i>kppks1</i> ^{PS4} (circular)

Strain name	GMO ID	Entry	Donor DNA with SH/LH flanks	Donor DNA with SH/LH flanks	CRISPR/Cas9 plasmid
phs1–/PoliC::pks1 [H]	KP-0143	phs1–	[(hygR)–(PoliC)] ^{ΔPpks1} (2.772 kb) primers: T <i>niaD-pks1-</i> SH5F/ <i>pks1-PoliC-</i> SH3R template: pNDH-OGG	n/a	pAMA/ribo-<i>kppks1</i> ^{PS4} (circular)
phs1–/Pgln1::pks1 [H]	KP-0144	phs1–	[(hygR)–(PgIn1)] ^{ΔPpks1} (3.052 kb) primers: T <i>niiA-pk</i> s1-SH5F/ <i>pk</i> s1-PgIn1-SH3R template: pNAH-QGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS4} (circular)
phs1–/Pgal1::pks1 [H]	KP-0145	phs1–	[(hygR)–(Pgal1)] ^{ΔPpks1} (2.570 kb) primers: T <i>niaD-pks1-</i> SH5F/ <i>pks1-Pgal1-</i> SH3R template: pIGR2H-LGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS4} (circular)
phs1–/PniaD::pks1 [H]	KP-0146	phs1–	[(hygR)– (P<i>niaD</i>)] ^{ΔPpks1} (3.183 kb) primers: T <i>niaD-pks1</i> -SH5F/ <i>pks1</i> -P <i>niaD</i> -SH3R template: pIGR2H-NGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS4} (circular)
phs1–/ΔPpks1 [H]	KP-0147	phs1–	[(T<i>niaD::nat1::PtrpC</i>)] ^{ΔPpks1} (1.912 kb) primers: T <i>niaD-pks1</i> -SH5F/ <i>pks1</i> -P <i>trpC</i> -SH3R template: pIGR2H-AGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS4} (circular)
Pgal1::pks1 [H]	KP-0265	WT:A95	[(hygR)–(Pgal1)] ^{APpks1} (2.570 kb) primers: T <i>niaD-pks1</i> -SH5F/pks1-Pgal1-SH3R template: pIGR2H-LGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS4} (circular)
ΔPpks1::pks1 [H]	KP-0260	WT:A95	[(T<i>niaD::nat1::PtrpC</i>)] ^{ΔPpks1} (1.912 kb) primers: T <i>niaD-pks1</i> -SH5F/ <i>pks1-PtrpC</i> -SH3R template: pIGR2H-AGT	n/a	pAMA/ribo-<i>kppks1</i> ^{PS4} (circular)
igr1 [H-AGT]	KP-0106	WT:A95	[(hygR)–(Pact1::gfp::TtrpC)] ^{igr1} (6.188 kb) f isolated by digestion with <i>Apa</i> l from pIGR1H-AGT	n/a	pAMA/ribo-<i>kpigr1</i> ^{PS1} (circular)
igr1 [N-OCT]	KP-0101	WT:A95	[(natR)–(PoliC::mch::Ttub1)] ^{igr1} (6.004 kb) isolated by digestion with <i>Swa</i> l from pIGR1N-OCT	n/a	pAMA/ribo-<i>kpigr1</i> ^{PS1} (circular)
igr1 [H-GGG]	KP-0172	WT:A95	[(hygR)–(P<i>gpdA</i>::<i>gfp</i>::T<i>gluc)]^{igr1}</i> (4.309 kb) primers: T<i>niiA-igr1-</i>SH5F/T<i>gluc-igr1-</i>SH3R template: pNAH-GGG	n/a	pAMA/ribo-<i>kpigr1</i> ^{PS1} (circular)
igr1 [H-OGG]	KP-0173	WT:A95	[(hygR)–(PoliC::gfp::Tgluc)] ^{igr1} (4.055 kb) primers: T <i>niaD-igr1</i> -SH5F/Tgluc-igr1-SH3R template: pNDH-OGG	n/a	pAMA/ribo-<i>kpigr1</i> ^{PS1} (circular)
igr2 [H-AGT]	KP-0094	WT:A95	[(hygR)–(Pact1::gfp::TtrpC)] ^{igr2} (6.637 kb) isolated by digestion with <i>Swa</i> l from pIGR2H-AGT	n/a	pAMA/ribo-<i>kpigr2</i> ^{PS1} (circular)

Strain name	GMO ID	Entry	Donor DNA with SH/LH flanks	Donor DNA with SH/LH flanks	CRISPR/Cas9 plasmid
igr2 [N-OCT]	KP-0108	WT:A95	[(natR)–(PoliC::mch::Ttub1)] ^{igr2} (6.489 kb) isolated by digestion with SacII from pIGR2N-OCT	n/a	pAMA/ribo-<i>kpigr2</i> ^{PS1} (circular)
igr2 [H-GGG]	KP-0176	WT:A95	[(hygR)–(P<i>gpdA</i>::<i>gfp</i>::T<i>gluc)]^{igr2}</i> (4.310 kb) primers: T<i>niiA-igr</i>2-SH5F/ T<i>gluc-igr</i>2-SH3R template: pNAH-GGG	n/a	pAMA/ribo-<i>kpigr2</i> ^{PS1} (circular)
igr2 [H-OGG]	KP-0177	WT:A95	[(hygR)–(PoliC::gfp::Tgluc)] ^{igr2} (4.055 kb) primer: T <i>niaD-igr2</i> -SH5F/ Tgluc-igr2-SH3R template: pNDH-OGG	n/a	pAMA/ribo-<i>kpigr2</i> ^{PS1} (circular)
∆ <i>ura3</i> [H-AGT]	KP-0148	WT:A95	[(hygR)–(Pact1::gfp::TtrpC)] ^{∆ura3} (4.185 kb) primer: T <i>niaD-ura3</i> -SH5F/T <i>trpC-ura3</i> -SH3R template: pIGR2H-AGT	n/a	pAMA/ribo-<i>kpura</i>3^{PS3} (circular)
∆ <i>ura3</i> [H-OGG]	KP-0149	WT:A95	[(hygR)–(PoliC::gfp::Tgluc)] ^{Δura3} (4.055 kb) primer: T <i>niaD-ura3</i> -SH5F/Tgluc-ura3-SH3R template: pNDH-OGG	n/a	pAMA/ribo-<i>kpura</i>3^{PS3} (circular)
∆ <i>ura3</i> [H-GGG]	KP-0171	WT:A95	[(hygR)–(P<i>gpdA</i>::<i>gfp</i>::T<i>gluc)]^{Δura3}</i> (4.318 kb) primer: T<i>niiA-ura3</i>-SH5F/T<i>gluc-ura3</i>-SH3R template: pNAH-GGG	n/a	pAMA/ribo-<i>kpura</i>3^{PS3} (circular)
Δpks1 [G]	KP-0192	WT:A95	[(TniaD::nptll::PtrpC)] ^{Δpks1} (1.698 kb) primers: <i>kppks1</i> -RT5F/-RT3R template: pNDG-OGG	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
Δpks1 [P]	KP-0242	WT:A95	[(TniaD::bar::PtrpC)] ^{Δpks1} (1.455 kb) primers: <i>kppks1</i> -RT5F/-RT3R template: pNDP-OGG	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
Δpks1 [S]	KP-0243	WT:A95	[(TniaD::sur::PtrpC)] ^{Apks1} (3.390 kb) primers: <i>kppks1</i> -RT5F/-RT3R template: pNDS-OGG	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
<i>igr</i> 2 [G-OGG]	KP-0246	WT:A95	[(genR)–[PoliC::gfp::Tgluc)] ^{igr2} (3.816 kb) primers: T <i>niaD-igr2</i> -SH5F/Tgluc-igr2-SH3R template: pNDG-OGG	n/a	pAMA/ribo-<i>kpigr2</i> ^{PS1} (circular)
igr2 [P-OGG]	KP-0247	WT:A95	[(baR)–[PoliC::gfp::Tgluc)] ^{igr2} (3.578 kb) primers: T <i>niaD-igr2</i> -SH5F/Tgluc-igr2-SH3R template: pNDP-OGG	n/a	pAMA/ribo-<i>kpigr2</i> ^{PS1} (circular)
igr2 [S-OGG]	KP-0248	WT:A95	[(suR)–(PoliC::gfp::Tgluc)] ^{igr2} (5.508 kb) primers: T <i>niaD-igr2</i> -SH5F/Tgluc-igr2-SH3R template: pNDS-OGG	n/a	pAMA/ribo-<i>kpigr2</i> ^{PS1} (circular)

Strain name	GMO ID	Entry	Donor DNA with SH/LH flanks	Donor DNA with SH/LH flanks	CRISPR/Cas9 plasmid
∆ <i>pks1</i> [H-W1G]	KP-0182	WT:A95	[(hygR)–(PgpdA::wcl1-gfp::Tgluc)] ^{Δpks1} (7.423 kb) primers: T <i>niiA-pks1-</i> SH5F/Tgluc-pks1-SH3R template: pNAH_ ^G kpwcl1-gfp ^G	n/a	pAMA/ribo-<i>kppk</i>s1^{PS2} (circular)
∆ <i>pks1</i> [N-GW2]	KP-0186	WT:A95	[(natR)–(PoliC::gfp-wcl2::Tgluc)] ^{Δpks1} (5.127 kb) primers: T <i>niaD-pks1</i> -SH5F/Tgluc-pks1-SH3R template: pNDN_ ⁰ gfp-kpwcl2 ^G	n/a	pAMA/ribo-<i>kppks1</i> ^{PS2} (circular)
∆ pks1 [H-W1M] + ∆ phs1 [N-GW2] (B1)	KP-0214	WT:A95	[(hygR)–(PgpdA::wcl1-mch::Ttub1)] ^{Δpks1} (6.949 kb) primers: T <i>niiA-pks1-</i> SH5F/T <i>tub1-pks1-</i> SH3R template: pNAH_ ^G kpwcl1-mch ^T	[(natR)–(PoliC::gfp-wcl2::Tgluc)] ^{Δphs1} (5.127 kb) primers: T <i>niaD-pks1</i> -SH5F/Tgluc-pks1-SH3R template: pNDN_ ⁰ gfp-kpwcl2 ^G	pAMA/tRNA- <i>kppks1</i> ^{PS2} - <i>kpphs1</i> ^{PS1} (circular)
∆ pks1 [H-W1GC] + ∆ phs1 [N-GNW2] (B2)	KP-0215	WT:A95	[(hygR)–(PgpdA::wcl1-gfpC::Tgluc)] ^{Δpks1} (7.620 kb) primers: T <i>niiA-pks1</i> -SH5F/Tgluc-pks1-SH3R template: pNAH_ ^G kpwcl1-gfpC ^G	[(natR)–(PgpdA::gfpN-wcl2::TtrpC)] ^{Δphs1} (5.071 kb) primers: T <i>niaD-phs1</i> -SH5F/Tgluc-phs1-SH3R template: pNDN_ ^G gfpN-kpwcl2 ^T	pAMA/tRNA- <i>kppks1</i> ^{PS2} - <i>kpphs1</i> ^{PS1} (circular)
∆ pks1 [H-W1GC] + ∆ phs1 [N-GN] (B3)	KP-0216	WT:A95	[(hygR)–(PgpdA::wcl1-gfpC::Tgluc)] ^{Δpks1} (7.620 kb) primers: T <i>niiA-pks1</i> -SH5F/T <i>gluc-pks1</i> -SH3R template: pNAH_ ^G kpwc/1-gfpC ^G	[(natR)–(PgpdA::gfpN::TtrpC)] ^{Δphs1} (3.529 kb) primers: T <i>niaD-phs1</i> -SH5F/T <i>trpC-phs1</i> -SH3R template: pNDN-GGNTn	pAMA/tRNA- <i>kppks1</i> ^{PS2} - <i>kpphs1</i> ^{PS1} (circular)
∆ pks1 [H-GC] + ∆ phs1 [N-GNW2] (B4)	KP-0217	WT:A95	[(hygR)–(PoliC::gfpC::Tgluc)] ^{Δpks1} (3.678 kb) primers: T <i>niiA-pks1</i> -SH5F/T <i>gluc-pks1</i> -SH3R template: pNAH-OGCGc	[(natR)–(PgpdA::gfpN-wcl2::TtrpC)] ^{Δphs1} (5.071 kb) primers: T <i>niaD-phs1</i> -SH5F/Tgluc-phs1-SH3R template: pNDN_ ^G gfpN-kpwcl2 ^T	pAMA/tRNA- <i>kppks1</i> ^{PS2} - <i>kpphs1</i> ^{PS1} (circular)
∆ pks1 [H-GC] + ∆ phs1 [N-GN] (B5)	KP-0218	WT:A95	[(hygR)–(PoliC::gfpC::Tgluc)] ^{Δpks1} (3.678 kb) primers: T <i>niiA-pks1</i> -SH5F/T <i>gluc-pks1</i> -SH3R template: pNAH-OGCGc	[(natR)–(PgpdA::gfpN::TtrpC)] ^{Δphs1} (3.529 kb) primers: T <i>niaD-phs1</i> -SH5F/T <i>trpC-phs1</i> -SH3R template: pNDN-GGNTn	pAMA/tRNA- <i>kppks1</i> ^{PS2} - <i>kpphs1</i> ^{PS1} (circular)

Plasmids used for transient CRISPR/Cas9 or as templates for the isolation of donor DNA were cloned in this study (Supplementary Table 3) or were published previously: pAMA/ribo-*kppks1*^{PS2}, pAMA/ribo-*kpphs1*^{PS1} (Voigt et al., 2020); pNDN-OGG, pNDH-OGG, pNAH-OGCGc (Schumacher, 2012).

Supplementary Sequence 1. K. petricola galactokinase 1 (GenBank: OM802156).

Kpgal1 locus (ORF plus 1.000 kb of 5' and 3' noncoding regions); Pgal1 (0.658 kb) is shaded blue

 $\dots CTCTGAACGGCATTGGGGACACGTTATTTTGTCAGGAGTCGGACCTGATCGTCCACCGCCTGAACGAGATCGTGGGGGATTCTTGGTC$ GGCTACCCAGTCTAGTAAACATGCTTCATGGGCTTGGAGGCTGCAGGAGCAGGGCGAGGGCCAAGCGGTAGGAGGGTTCGGAGGCGAGGG AGGATCTTCATCTTTGGTTGCGAGGCATATCCAGCACTTCTCGAGAGCAGAGGTAGATTGCCTAGTCAATGTTGGAGGTCGTTCAGGCTG ATCTGCGATGTCTGCCGTTGAGTGATTGACGAGGCTCAGGCTCAGATTCCGACCCTGTCGGAGAGGAGGAGGAGGCCATgtttgcqqtagtqt tgagttttatgagaatcccaagtgtcaccgtatagtacttgtagtagacggtaagctgcgtgacctggacctgacctagccgttggaaagctcaagcgtgagacatcttagacgcgactgccagagagcgcaacccagcttagaaggcccgaatcctcagcctgaatttgtcctcaacaccaggetegacaagetacattgatecaacagaaaetttgaettteegtettetacacaeggetegtaattgeagateecaatateaggetaqqactcqtacaac<mark>ATG</mark>ACGAACGGGGTGTCAAGGGTTACGTCCCTAGACGACATATATTCAAATGCGACACCTGGAGTCTTACCAGAACA GAAAAGCCGAATCAAGAATCTTGTCGACTCATTCAGAAATGCACACGGTAGCAATCCGGATTTCATAGCCAGAAGCCCCGGTAGAGTCAA GTCTTCGTCAGAAACGACCATCAAGGTCGCGGAACACAAATGATACAAAGTATCCTACAGCACAATTCCAGGTACCTCGAGAAGGGGAGGT GCACATGGGCGAGCATGATTGGTCGAATTATTTCAAGGCCGGACTCAGAGGCTCCATTGAGGTTTTGAGAAAAGACCGTGGACACAGCTT ${\tt CCATCCAAAGAGTATGGACGTTATGGTAGATGGCAATGTCCCTGCCGGTGGGGGGGTTGTCGAGCAGCGCAGCCTTCGTGTGCGCTTCAGC}$ CTCGGGCGGCATGGATCAAGCCGCGAGCATATTCAGTGAGAAAGGTTATCTCTTATACTGCCGCTTCTTTCCCAGCTTCTCCGCCGAGCA TGTGCCGGTACCAGCGGCCGATCCAGAGATTACCTTCCTGATTGCGCAATCTTTCATCACTTCCGACAAAGCTGTCACAGCCGCCAGACA ${\tt CTACAATTTGCGAGTGGTCGAGGTAACACTCGCGGGCTGTTACATTAGCCAAGTTCTTCGACATTACACTCGACCCTGATTCGTCATCGCCTGATCGCCTGATTCGTCATCGCCAAGTTCTTCGACATTACACTCGACCCTGATTCGTCATCGCCAAGTTCTTCGACATTACACTCGACCCTGATTCGTCATCGCCAAGTTCTTCGACATTACACTCGACCCTGATTCGTCATCGCCAAGTTCTTCGACATTACACTCGACCCTGATTCGTCATCGCCAAGTTCTTCGACATTACACTCGACCTGACCTGACCTGATTCGTCATCGCCAAGTTCTTCGACATTACACTCGACCTGACCCTGATTCGTCATCGCCAAGTTCTTCGACATTACACTCGACCCTGATTCGTCGACCTGATTCGTCGACCTGACTCGTCGACCTGATTCGTCGACATTACACTCGACCTGATTCGTCGACATTGCCAAGTTCTTCGACATTACACTCGACCCTGATTCGTCGACATTGCCAAGTTCTTCGACATTACACTCGACCTGATTCGTCGACCTGATTCGTCGACATTACACTCGACCTGATTCGTCGACATTACACTCGACCTGATTCGTCGACATTACACTCGACCTGATTCGTCGACATTACACTCGACCTGATTCGTCGACATTACACTCGACCATTACACTCGACATTACATTACACTCATTACATTACACTCATACATTACACTCATACATTACACTCATTACATTACACTCATTACACACATTACACTCATTACACATTACACACATTACACTCACATTACACACATTACACATTACACATTACACATTACACATTACACATTACACATTACACATTACACATTACACATTACACATTACATTACACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACTATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACATTACA$ GGGCTTCAGCATCCGCAACTTCCAGGAAGAGCTTATGAAGAAGCATGGTAAAAGAGATCTCGCCGAGGATAAACAGCTTGACATGATGAT CAATGTGGTTCGGGAAAAGCTCACACAACAGTCATACAGCAGAGCAGACGTAGCTCGCCATACTCGAGATCGACGTATCGGCTCTCGAGAA TGCTTTCAAAGATGCGTTGTCGACAAATGCGGGCAACAAGCTAAACCAAGGTCAACTCAGTTACCTTGGCGACCTCATGAACAAGACAA AGACTCGTGCAGAGATGTGTACGAATGCTCGTGTCCCGAAATTGATGATGATATCTGTGCGATTGCCAGGAAGAACGGTGCAATGGGATCCCG GCTCACAGGCGCAGGATGGGGCGGTTGCACAGTACATCTAGTGCCTCAAAACAAGGTCGAAAATGTCACCAAAGCGTTGAAGGAGGAGTA GGGGGAAGCACTGAATGTGTAGatgataggacatgcatcgtcttatgctcgtgtcctgaccacagtccactttgcaccgggtccctggtt ${\tt gtggcacttatcccctggctcgacatgtttgcctattatcgtcatgcataaatattggtgaaagctacgcgctcttgccacctcgctaaa$ gaaccgactagtcgtcgatctacctgttcctaaggcacgatgcaaatcatccgttagtcggaagtcgaaattctgccagtgcaatcgagaagcatagctacgcctgacttgcaccaggctaagcctggttacagtgcttattggtttcattcggtgtccgatgcgcctactcctacttgt agccaggccccgtccccttcatcgcgtcaaaccaatcctcttccatcatgacagacccctcatgcacccctcccatgtggcctagggtctcgaaaggcccgccctcgctccacatgtcggcgctctaaacagggacgccgacatcagccagtcatgtcttcggccaccatgttcacttggtctaaaatgaggtgcaggccgttccgtgacatacgtgctacgcggtgaggagtataaccaagccatctggaaagtttttcaaggcaatcagttatcacacactgtctcgtgctagtccatactaccacctgactgtactgcgattgtagtaatctcgcacagtcccatacagcagctccataccagcagctccatagcagctccatacagcagctccatacagcagctccatacagcagctccatacagcagctccatacagcagctccatacagcagctccatacagcagctcatagcagctcatagcagctcatagcagctcatagcagctcatagcagctcatagcagctcatagcagctgcatagcagctcatagcagctcatagcagctcatagcagctcatagcagctgcagctcatagcagctgcagctcatagcagctcatagcagcCAGTCAATAGCAACGCGGGTCGACCACTTACA...

KpGAL1 (512 aa)

3

MTNGVSRVTSLDDIYSNATPGVLPEQKSRIKNLVDSFRNAHGSNPDFIARSPGRVNIIGEHIDYSLYNVLPTAVLNDVLVA VKVNESSSETTIKVANTNDTKYPTAQFQVPREGEVHMGEHDWSNYFKAGLRGSIEVLRKDRGHSFHPKSMDVMVDGNVPAG GGLSSSAAFVCASALAVMAANGHEVSKQDLLDLCIVSERSVGVYSGGMDQAASIFSEKGYLLYCRFFPSFSAEHVPVPAAD PEITFLIAQSFITSDKAVTAARHYNLRVVEVTLAAVTLAKFFDITLDPDSSSLGFSIRNFQEELMKKHGKRDLAEDKQLDM MINVVREKLTQQSYSRADVARILEIDVSALEKVYFSKFDVEGDTFKLQQRALHVVAEARRVVAFKDALSTNAGNKLNQGQL SYLGDLMNKTQDSCRDVYECSCPEIDDICAIARKNGAMGSRLTGAGWGGCTVHLVPQNKVENVTKALKEEYYNKRFPDLSA DKMRDAIVISKPGQGSSLIVGEALNV*

Supplementary Sequence 2. K. petricola white collar-like 1 (GenBank: OM802157).

Kpwcl1 locus (ORF - shaded blue - plus 1.000 kb of 5' and 3' noncoding regions)

 \dots acttgacttgcacttgacatgcaagtcatactgtagagtataatgattgctgtaaggcagcacaatcgacatgttttctgttgaatc gctgcagcagaagcatagatgcatgctccgacacaactatgtacaggaagacgggtaggggcttctacgagttgggtgcgatcaacatcgcaggcggcccggccttggagctgtccacttttctcgcctggcctgtcgggacagtgcggtcgcggcacatagtaacaacgaaagccgtgacacqtgacacqtgacqqtgacacqtgacacqtgacacqtgacaagctgcgatttattcttactgggtcagcacgtcgagacgagatgcattaacttcacgatgcaatctgaccagtgtcaaccagtggacttggtqqqctttctcqqcctqctqaaccctqacaaqqccqactqcqctttactcqaqcaccatctqctctqcqcctcqtccaactaqaccacq ${\tt ctgacgccaacattctgacaccagcggcacaggtcgtggagaccgccgaggctcgacgtgccaaagacagcactcacggtcgatgagcat$ ${\tt ctgagagatgtacgacaagttttcacctctgccgaccgagaccttgaatcctgttcctggagtgcgcaattaactcgacggctgcgaccg$ tccgctgttcgccATGAACGGCATGTCGAATATGTACGATCAAGCCTATTCTGGCCTGGAGTCACAAGCACCCCATGGACGGCTACCCGCA GTTGATGAGAAGGCGGCAGACAGCCTACCAGCCTCAATTTCGTCCCACCCCTGATGGCGCCCAGGATCAGGCCCAGGAACAGGCTCAGAA TCACGCTCGTCGAGCGTCCATGATTGAGTTCGGCTCTTATAACAATGGCGACCTGACCGACTTCGAATTCGACCCAGCTCCCTCGCATCC CGCCATGTCAACTCAACTCACGAATCCGGCCTTGATGCCTCAAAAAACCTCTCGATCCCCGACGACGACGTCCACGTGAAGATCTATCACT TGATACCAGTTTCCCCCCAGATGCCTGACTTTCAAGCTGGTTCCACGAGTGCCTACCCAGCTTCCATGTTACCTGCTACAGCCATGGGCAT GGACGGTTCGAATGGCTACATGCCGCACAATGTGAGCATAGAGGGCGATTTTGATAATATGCCGGCGAACATGAGTGCTACGACCATGCC TTCGAGCCAGGCGCAGCAGGGCATGTACACCATATCGCCTGTCGCTGCGAACTTTCCAATGCAGTATCCAAACACGGGCCACGACATTGG TGGAGGGACTCCAGACAACAAAAAACCTGATGCGTATGCATCAGGGCACGGCGCCTAATGCCTCTTCACCCCAGAGATTCTTTGGCAGGTC GCAAAGCCAGATACGGAGGAACCCCATGATGCCGAGCCCGTTGTCGGTGTCTGCACAAAACTCAAGCTCGAGCACGATGGCCTCGCCAGC ACAGATGCCCTCGACACCTACCATTGCACAGAATCAACAGTCCCAGTCCCGCCGCGGGTTCCCTAGATATGCAGTCAAACAGCTATCCGAA TCCAGCGTCCGATAATACGCAGATGGATCAGGGCCAATCGGCATCTCACTTTAACGCCTCAAGATGGACAAATGCATATTCAGCCACTGG ${\tt CTTTGATATGCTAGCCGTCTTGATGCGCGCGCGACCAGGCGCAACCCACAGATCAGCATTGGGCCGGTCGACCTTTCTTGCGCGCGTTTGT$ GGTTTGCGACTGCCAGAAACATGATTTGCCAATCATATACTGCTCAGATATGTTCGAACGTCTGACGGGCTATTCACGTCACGAAATACT TGGTCGCAATTGCCGCTTCCTACAAGCGCCAGACGGAAAGGTACAGTCGGGCATCCAGCGCAAATATGTGGACGACAAATCGGTGTTGTA CCTGAAAAAACCAGATCAACAAAAAGAGCTGAAGCACAGCTATCCCTAATCAATTATCGAAAAGGTGGACAACCTTTCATGAATCTACTGAC GAAGAATCCAGATGGCACATACGAAATCAATTACAACAGAAGTGCTCTACCAGCATACCGACTACCAGCACCCGATCCTAGTAGTGGCCT GATATGGGACAAAATACTGCTAGAGAACACGGATGATGTGGTACATGTGCTCTCGCTGAAGGGCCTATTTCTCTACTTGTCGCCGGCTTG CAAGTCGGTGCTGGAATATGAGCCATCAGAGCTCGTAGGCACAGCATTGTCAGCGGTATGTCACCCTTCGGACATCGTACCTGTTACGCG AGAGCTCAAGGATACCACAAACGGGTCCCCCAGTGAATGTCATCTACCGGGATACGCCGGAAAAATGCTGGTTACACCTGGTTCGAAGCACA TGTTGTGTTAACCGATGGAGCTGGCGATGCTGAACTCTGGTCGAAGATGTCCACGACTGGGATGTTTCTCTACGTGTCGTCAACGTCGAG GTCGATGCTTGATAGGACACCTGACGACCTTGTCGGGACGAGTATGCAGACGTTAATGCGACCTGAATCACGCAGGAAATTTGGCCGCAT GCTTGAACTTGCAAGAATGGGCGAGAGGTCAACTTTCAAGCATGATCTCCAGAATCGCAGGGGTCAAGTACTACAAGCGCAGACCACGAT ACAGAAGAACAACACGTCGATACCTCGTTCTGATGCTTTGTCAGACATGGGGCCCAATTGCGTCCACTCCACAACCAATCGCTCCGAGCGA GCCTCAGGAAAAAAGCTCCCCGCAAGTGGGCGGGCAGTCGCCCTCGGCTCAGGATGCTTTCATTGGAGGATCGGGTATTCTCACAATGGC AGGCTCAGGCGGTGTTCCTATCGGTTCACAGGACGAAGCTCTTGCTAGTGAAGACAACATATTCGATGAGCTTAAGACTACTCGAAGCAC GAAAAGGAGGAAGGGAATCACGAATCTTGAAAAAGACTGTGCTAATTGTCATACGAGAGTTACGCCGGAGTGGCGGAGGGGGTCCAAGCGG ACAGAGAGATTTGTGTAACAGCTGTGGGCTAAGATGGGCTAAGCAGqtaaqtcqqtttcctqaaatatqtaccacqtttcqqcaqcactq actgatgtgtgtagAATGGCCGCGTCTCCCCCACGCAAGTCTAGTATGTCAGACAAGTCCGCCAGCGTCGCCCGGCCATACCGGCAATGTTCAA CAGCGAGCAACAGGCAACCCTTCTGGTGGCAGCAAGGAAAACAGCGCTGACGTGAAGCCTGGTCCTGCGTCGATGGCGGAGGAGAGCAGT agcaggcacctcacagcaaccaacttttaatcatacctcacggcatcaaccatgcgcagttctcgcctctgctgcccaacagttc

KpWCL1 (1,069 aa)

MNGMSNMYDQAYSGLESQAPMDGYPQDMPLEGLDTSMMAHGASQTLDQIINQNNQELMRRRQTAYQPQFRPTPDGAQDQAQ EQAQNHARRASMIEFGSYNNGDLTDFEFDPAPSHPAMSTQFTNPALMPQKPLDPRRVRSREDLSLDTSFPQMPDFQAGSTS AYPASMLPATAMGMDGSNGYMPHNVSIEGDFDNMPANMSATTMPSSQAQQGMYTISPVAANFPMQYPNTGHDIGGGTPDNK NLMRMHQGTAPNASSPQRFFGRSQSQIRRNPMMPSPLSVSAQNSSSSTMASPAQMPSTPTIAQNQQSQSRRGSLDMQSNSY PNPASDNTQMDQGQSASHFNASRWTNAYSATGFDMLAVLMRVATRRNPQISIGPVDLSCAFVVCDCQKHDLPIIYCSDMFE RLTGYSRHEILGRNCRFLQAPDGKVQSGIQRKYVDDKSVLYLKNQINKRAEAQLSLINYRKGGQPFMNLLTMIPITWDTGE YKYFVGFQVDLVEQPNSVSAKNPDGTYEINYNRSALPAYRLPAPDPSSGLENMGGQTIPREEVSQVLATIGNGETDLSKRI WDKILLENTDDVVHVLSLKGLFLYLSPACKSVLEYEPSELVGTALSAVCHPSDIVPVTRELKDTTNGSPVNVIYRIRRKNA GYTWFEAHGSLHTEQGKGRKCIILVGRQRPVFALARNDVVLTDGAGDAELWSKMSTTGMFLYVSSTSRSMLDRTPDDLVGT SMQTLMRPESRRKFGRMLELARMGERSTFKHDLQNRRGQVLQAQTTIYPGDAKKGFKPTFLLAQMRLLKMTRSMLLQQKNN TSIPRSDALSDMGPIASTPQPIAPSEPQEKSSPQVGGQSPSAQDAFIGGSGILTMAGSGGVPIGSQDEALASEDNIFDELK TTRSTSWQFELRQMERQNRLLAEDLQTLLQRRKKRKRRKGITNLEKDCANCHTRVTPEWRRGPSGQRDLCNSCGLRWAKQN GRVSPRKSSMSDKSAASPGHTGNVQQRATGNPSGGSKENSADVKPGPASMAEESSKTPTRLTPSRIKNERDDDAEASNMPT IMEEGPEPPQSDVLPT* Supplementary Sequence 3. K. petricola white collar-like 2 (GenBank: OM802158).

Kpwcl2 locus (ORF - shaded blue - plus 1.000 kb of 5' and 3' noncoding regions)

CCTCGATGATGGTGGTTTTTCCAGAGCCGTTGATGCCGGCCACGAGGGTTAGTGGCTTATCGAACCTGATACTCTCCCACGCTCAGTAG ${\tt GAAAGGCACGCACACCCCAATATCATCATCTTCTCGATGGAAGACATagcgatggacggcctgcaaagcagggcttggatgaatcaatatcaaatatcaatatcaatatcaatatcaatatcaatatcaatatcaatatcaatatcaatatcaatat$ tqacqattattqctqtqaqaqacqaaqqactaccatctqtcqqaqqqacaqattaqtqattqqqtaqqqtqcaqttctaqtaqac ${\tt tatcataacgtctgcttctacctgcttctcgtctggtgattcaagcgacttgcactgagcaccaacgtacgacaaagtatcgaggtgacg}$ ttgcggaaaacctggagtggcgcgagcagagcaaaacagcacaaaattctggccccctaccgtagtcagcatctttggtcgccaactcgatggcagaggagctgctgctgccattggccattgacgagcggatagaccaagacgttcagctcagtggagtcttgtgctgccctgcccagtactgaat caggcaaggggtc<mark>ATG</mark>GATCCTTACAATCAAAACCCTGGCATGTTGAACATGTCGGGTTTCAATGCTGACATGTTCAATGCGGGCATGGT GGATACTGGCGATTCTGATATGAAGTCGTATGGCGATGACATACAGATGGATATGGGCGACTTGTCCGCTGTGCCCTTCAACAGCGTCGA GCCAATGGCGGGCTCGATCCCCAGAATCAGAACACCAAATGCAAGGTGAAAACAGCATGAACATGACGGGTGTGGGAGCCGGTCCGCTCCC TACGGGCTTCGGTGTCCACACCCGGAATGGGAAGTACGTTGACAGAATTCACCAAACGGCGCAACTGGTCTCAGCGTGTTATCGAAGAGAT CAAAGACCTCCTCTATGTCCTGACGCCTGATGCTCGCTTTCTCTATTTGAGCCCGTCGACCAAGCTGTTGACAGGTTACGACACGACAGA ATTGACTGGCAAGTTCATCCACGACTTCATCCATGGGGACGACGACAACTCCCTCTTCCTGCGTGAATTCAACGAAAGCATAGCAACGGGCCA CGTCCTCCGCATGTTCTACCGTTTCCGCTGCAAATCGGGCGTCTACCTAATCTTCGAATGCCACGGTCACCCCACCTAACCAACGACGT ATCGCAATTGGAAGTATCAGGCGGGCCTCGCAATAACGCTGGGTTCTGCGCCGGCTACTTCATGATGGTTCGCCCCCTACCCCACAAAGAA TGCCGTGCTCCTTGATTCCTTCGAGCACAAACTCGAGAATGAACGTCTCCAAGCGCGCATCAATGCCCTACGCCGAGAAGAAGCCGA GGAGGCAGAAACCCAAGTCCGCCACTACCACAAAAAAGCAGGAGGCGGTAGCTCTGTAACTCCTTCCGGCCAGGGCATGGACATGAACGG CACACCCGGCGGCGATTCACCCAGCATAACATCTGATCGGCGCGCAGCAGCGAGCTCGGTTCCATGCCGCCACCCGCCAAGCCAACCATGAG CAACATGGCATTGACCGTGAAGCGCTTGACGAAGCCAACGCCTTCGCCCGACCAGATAGCATCACCGACAAGATGGCCCCGCTACGAAGG CACAAGCCACGTCGACAGTATCGAGATGCTGACTGGTCTGCGCTACCGCGAGGGCGAGCGCGCCCAAGGAATCAGCACGGGTGGCACATC GAAGAAGGTCAAGTCGGCCGACGAATATGTGTGCACGGATTGCGGGACGCTGGACTCGCCTGAATGGCGGAAGGGCCCGAACGGGCCAAA GACGCTATGTAATGCATGTGGCCTCAGGTGGGCCCAAGAAGAAGAAGAAGCGAGCTGGTTCTATGAGTGGTGGCACTACGGGGGCTTACAGC TGGCTCTATAGGTAACACCGTTAACAGTGGGGGGTTCAGGTGGGAACACTAGCAATGCCACAGTTGTACCACAAGCAGGAATGGCTCCCAG ccagtgggctcttccgtactccagaaaacaccgatgcagcgacagcaagtgagcgaaaaggcaatgcgtgatcagcactggccccagctctaccaataatqttacqacaqcqcaaqcqcaaqcacaaqcqcacaaqcqatcaaqqqaqqtcqcaaatqqtaaaqtqccctcaacatccqqqtctgtacctcccccgaacccgacaaagacgcgcgctgtgcccagcgctggacaacaccgctagagatgatatacacccccgcgtgaggga gggcaacgaagcaagccagggttcaggcgactgtgcgctgcccggataccggcgatagaagtagtgcgtgtgggcaccggggatcgaggggtctaagatgtacctatgtagcatgggtccaggttcaacgccaggtgcc...

KpWCL2 (517 aa)

MDPYNQNPGMLNMSGFNADMFNAGMVDTGDSDMKSYGDDIQMDMGDLSAVPFNSVEPMAGSIPESEHQMQGENSMNMTGVG AGPLPTGFGVHTGMGSTLTEFTKRRNWSQRVIEEIKDLLYVLTPDARFLYLSPSTKLLTGYDTTELTGKFIHDFIHGDDNS LFLREFNESIATGHVLRMFYRFRCKSGVYLIFECHGHPHLTNDVSQLEVSGGPRNNAGFCAGYFMMVRPYPTKNAVLLDSF LEHKLENERLQARINALRREEAEEAETQVRHYHKKAGGGSSVTPSGQGMDMNGTPGGDSPSITSDRRSSELGSMPPPAKPT MSNMALTREALDEANAFARPDSITDKMARYEGTSHVDSIEMLTGLRYREGERAQGISTGGTSPALIRGDAGIDIPADKSDP RFGGGYMDKKPKKVKSADEYVCTDCGTLDSPEWRKGPNGPKTLCNACGLRWAKKEKKRAGSMSGGTTGLTAGSIGNTVNSG GSGGNTSNATVVPQAGMAPSLPTGHSTGSSH*

Supplementary Sequence 4. K. petricola intergenic region 1 (igr1) (GenBank: OM802159).

cagtcggctagatacacaataagtccgctgccgagatcgacctacggatatgtaagaattctacgagatgcttcgtttgggcgctccaaagcgcctcagtcctcagatacacaattgactgccactttgatgttttagaggatcgatacattactttatagtagtctatgccataccaggcgactagtgtctatgacaaatacaggttcctcggggttattaggttctacatgatctgcaggcggtaacctgttccaTTAGCTGTTGGATAGTATTTCCTGTGGCCTCCAAGTGAACGCAGTTTTAGATTTCGCCTCGAACAAATGATCGTTTAGAAATTCTGTCGTTCGCCGGCTCCGT GCAACCCTGCAACGAATTGAAAAATGTCGGATTTGGCTCGAACTGGTACGCCAGAGTCGGAAATGCCACAATCCTGCCCTGGCAGGTCATC ACTGGTAATGTAAACCTGGCATCACCAGGTGCGCTGTTATCCAGTCGTTTTTTGAACTTGTCTCCGGTCGGAGACGTTTCCAACATAGCC TTCACAGCAGGCACATCTTCGGGTTGATACGGTCTGAAAATGATGTGCTCAAGGAAGTTTTGTTGCGATGATTGAACACCGATCCAAAAC CGGCGATCCCAAAGAAACCAGCTGTACCGATCTTTCCCGGTCTCGCCAGACGTAGGCTTCAATTTAAATATGTGAGTGGCTGCGGCCATC TCTGACCGTCTGAAATTTCCCCCGACTAATCATGAATGTCACCGTTTTGTTGGTCATGTCCTCATTGATGAGCCTAAATACGGCACCTCTC ACTGTAATGGCGGCAGCCGTCTGGGTTCCTGATGAATCTCCTTGAGGCTCTGATAGGTATCGCGCAAGCTCCATCGTATGGTCGCCGTTT AACAAGAGTGGCCAAGAGTCCGAGTGAGCAGGACTTGCCAGCTCAAATAGCCTGGCCATCCCATAGGAAAAACCACGAAGCTCAGCAGGG GTACGCAGATGCTTGAACTGCTTTAGTGTGTGATTTTGACCACTCCGGTATGACTATCCAGACGAAACTTCAGAATTTGATCCCAAACATGT TGGGAACGATCTTGGGAGTCTTGCGATAATGTGTAGGCACTCCACTGTAAGGCGCGCGAAGGCTCTGTTCTGTCAAAGCCTTGGGTAAAGAA CTGCATGTAGAAAGGATGGCCTGCTTGGGAAAGATAAGCAGTGGGCGTAACAAGCGCTGACCTTGGTATGGCTGCTTCTCCCCCAATCAGG ATTTCGTTCGTAGATCCGGTAGCAACGCGTTTCGCAGGTACTAGCCCATTCGGTAGTAGGTTGGACTCACCACGGACAGCAAGAATGCTC TCACCACAAGGCATGGCGGATATTTGGGCCATGCCTAGGAACCCTAATACGTTGGGATTACGATTCCTCAGTAACCGTAGTAATAGTGTC TCCGTTTGATCATCCAAATGATGTCCTGCGAAGAGATTGGAGATCTCGTGATCCCTAGCAGCTCGCGCGATGGCTTGGTATCGGCGTGTT CGGGCGACTTCCTCGAACCCACCTTTGGCCAGATTTTCGAGCTCACCCGGAGACCACGTCAGTTTGAGGATTTTAGAACCTATACCTAAG CTCCGAAGATTCCTCTGTACTTGAAGGGCCTCAGCAGCGCTTTCGGGACGGGCACCATGGTCTACAGTGAAGGCTTTTGGTGCGAACAGG CGTTGATTTGGGATATATGGATGTTTGAGCGCCTGCAACAGAAAGGCCATTACCATTGAGTCTGCCCCACCGCTAACAAGCACGCCTACT TTGTGTGGCCTGAAAGGTAGGTTCCTGTGCCTGACGAGATAGGGGGCAAGCTTGGATAGGTGACGTGCGAAGCCCTCGAGCTTGATATAA agcactctgcatccaggagagacacttcaagcaaatatcgtctttgctttgttagctatacagcctttcgtgcgaacctgtccggATGATCAGGATTGCTCTTTGGTCATGCCGTCGAGTCGAAGTCCCCCTCGTCTATGTTCGACGCGGGACAACACGCCACGTTCAGAATGTCGTTCTCCA GTCTAGGTCGGTGACGACCGTGCCGACATTGAGCTCTTGGACGATCAATTCTTTCCGAGAGTGTTCGTTTGCGCCGCAGACTCCAATTGC ACTCGTTGTATCAGACAAGGAATTGCCTCCGGCGCGCCACCAAATGGTTCGTCCACGAAGAACAAGATAGTTCCCAGTTCCCGGTCGCACTC CCTCGGACACTCAGAGCTCAATTCCTCTTTCTGGGAGGCTCACGGGGATAGCATTGTACCCCCTAGAGGTCACCACAATGGCGTCTGGCGA TGCCTCTTCAACCACATTCGATCGTGTAGATGCACCCCTAAACCTCTTGCTAGCCCACATAGAGCGAACGTCTGGCCGAAAGCAGCTTTC TCAGTCCGTCTATCTCGCTCAGCATGACCTTCGAGACCTGCCGCAACCTCTACAAGACGATCTACCAACACCACTGCTGGTAAAGCACGC CATGCAGCTGGCCGGCACCAAGGTGATTCGCTTGTTCCGTCCAGAAATCGGTGATGCCATCTTCGACCACACCGCGAAAATGCTCAATCA GATCTTGCACGATTTGGTCTGGGAACAGCCGTCAGACAAGAATAATAATAGCGCGGGTCTTACAGCATGTGCAAGAAGCCACGCTCGAGAT GGGCCAGGCGTTGTTCATTCCCAAGGGTTGGTGGCATAGCGTCAAGGGAATCGGGAACGGCGTGACTGCTAGCGCAAATTGGTGGTGCTCCG ttggatcatcgcaaqaqacqggactccaaqaqcgtcatqaqaaqataacaccctgctcttgacattcagtgcgcgctaqaqgaqcctctg cgaaggatctttgcaagggccaacatcaagcagaaccagtttgtcggatttccctggctccctgcaagacccacctccgcctctcaaatt

cctccgcgcagccccacgtcctgccgcattcggccatgtatcattagcgacaccccagccatgcacatgccgatgggctttcgtccacatcgacccatccccgcatcaatcgcttagcgatatgcaccgccggctttagttgaacgacatctattcttgaaaacaccgaggacgtggcgggtcatcaccgccacatctccccgcctcctcttagcccgttctacctccccatcttcctaccagtagctcagaccaccccggacatagaatacgaggccctaccctggcacttactaggccaaaggtcgcttatactgttactatgctcgtcaagtcacctaccattccccgtgacctgtcaatct gacaccccctqtaaatcqatcaqctqaacccqatcttacqtcaaaqcaqtaqtatccaaacqqqqcqtqcattqaqqccaaqccaccctta cctgactcgctactgtgaaaagcccccgcctagtactgatcgctgcatgtactacaaatacatgtaccgtctagcacgctacctgttctt ${\tt ctaaacggacttcatcgtcgatctcatcttgagtttgtgtccgttgtacgagcgaagattacagaaccgcgggtcgatgcaacagttcat}$ gtgtattcgtccgaacacatttgtctctttcgaagttgtcacgaacacagtgctgtgactctgcaaacttcgtctatttactccacgcggcqccttqcatqatcctttqtqtqtqtqtqtqtqtattqaaqqaaacaqqqcaactqqtaqcacqttctqtqaqatqaqctaataqacttqqt ${\tt CTGTGCCTGATCGCGTCCCAGCTCCGTCGAACAAGAACGAGATAATCTCGTCCAGGATAGTGTACAACAAGTGCTCATTCAGCCGCTTGT$ TATTCATAACAGCACTAATTCGTCTAGCAGCTGCCTGTGCGTTCGCTCTGCCTACCACGCTAACTCGGGAATGAGGGTCCCCA TCTCGGCACCTGTTTCGGGGTCAGTAGTATTGGCCGGTGGCCACATCGTGTTCTTCGCTGTCTCGATGTACTTGAGCAGATTCTCCTCTG AGAACACGGAGGAAAAACTATCACGAACTTTTCGTTCAACGGTGCCGCCAAGTAATTGGTGTATGACGACCACGACTGCGCGACCTCGAA GCCAATTGTTGCCTCGATTGAGCTCGAATGTTTCCAGGAAAATGTCGCATATGGGCCTTGACGAAGGGCGTTAGCTCCTTGTTCTCAAACG TCGCGCCAGTATTGATTTGAGTGGTGGCTGCCGAGATCAGGTTCTGACCTGCAGCAGAAAGTTGGTCGATGACCGCTACGTTGCCAATAA TGATGGCTTGCTGCGACAAGAACGAGCGAAGCTCGCGGCTTCGGCAAACGTCAGGCATGCGAAGGAGTCGCTGAAGATATGCTTCGAGGG CCACCCGGCGATTGTGCAAGAATTGCTTTTGTAGCTTGAGCACCATTCTCCCGTGGGAATTCAAGGTTGCGTGTCGATGGGTAGCGTCGACGAAGTTTCGTATGGAGCTCATGAAACTCGCTGTAGCGGTGAGCTATCGCCCATGAAGCCGCTACCATTTGGTCGCCTGCACGTCGTT GTACTTTGATTACATAGACTGCATGTTCTTGACCATCATCTTCACGACCCACCATAACCGAATCAATGGCAACCGACGCACGGCCATACA AGCTGTTATCACCTTTCTTGAACGATGTACTGTTGTCGTTGAAGCTCTTTGCGGCGTATCTCACGTTGCAGACTAGCTTTCGATTTTCCAA GTATGCGTAGTTCTGCAACATTGTTCGTTAGTTCGGCTTTTCGGGTCAAGGTGTCAACCACCGCGTCTTGCGATACCAGACGCTCAATCT CATCTGAAAGAGTTGTGATGGCTTCCGCCAGGCCCAGGTCGCCAGGAGCAGCCTGATGAATTTCTTCGTCCTTGTCTTGCTTTCCCTCGT ${\tt CTTCGTGGTCGAGGTATTCGTCTTCGACAAATTTATCCTCGTCTCCGAAGAGATCGTTGTCTTGAAAGACTCCGATTCTGCTAGCACTGC$ TGACCAGTCCTAGGGTGGCCAAGCTTGGCTTGGGCTTGTCGCCTGTGGAGCTGTCAGTGCGAGTAGTCTCGAGAGCGGGACGAGGCGAGGCGAGT GTTGCTCTGACATGGGTGAGCGGAAAAGAGTATCTGGCTCGACATCAGACATGCCCGTGTTCGGACTCTGTGCCATGATGTCCGTTAGAG CCGCTTCCATGTTCTCGATCACCTCCGGCTCTTGCACGTCGCCGTTCACGGACTCGTTGCCAAGACTCTGTACAGAAAGAGTGAGCGGAT CGTTATAGTCATCGTCAAATAGAGGTCGATCCACATCGAGCGATCGGCGCACAGGAACCAGGGTTTCAGTATTTTTGGTCGGAGAGACA GGCTTTTGATGTCTGAGGAGGAGAGAGGCCGCCCTTCGAAGGTCTTTAGCTCTGTCCATAGGTGCTTGCGAGTTTGTTCTGCTGACTGTAG GCGTGCTACCTTTTGGTCGCACTGGCGCAGGCCTCACAGCAGCGTTGCCATTAACATGTACGCTTTGTTGTCGCTGACGCTGTGCGTCCT GTCCTTCATCTGACGCAAGGAACTTGTAATAGAGGTCTGATTCACGAAACTTCGGCAGGTATTTCTGTTCGAGCTCTTCGAGGGCGGCAG ATTGGGAAGCTAGAATGGCAACTCTTGCTCCCCGGTACTGCTCCGCTGTAGCTTTACGACCAGCTTGCAGAAAATCCCCGAACTGCGTCTT GAAACTCCTTAGGAACTTTCAATTCGTCCTTCATCACCATACGTTTCAGCAATCTGCGCGATGTCGAGTCGGTCAGTGACGGTCCATGTTA TCGTTGCTGCTGATCGTTCGTCACCAAAGTCGTCCTCGAGGGGGTTGCGGAAGCCATCAACGACCACCCAGAACTGCACAAGAGTCATCT TGTTTTGCCTATCCATGAATTCCATGAAGTAGGACAGAACCAGAAGCTGTGCGCATGATATCCACTAGCTTCCAGTTTAGGACCTTCGCCG AGGCGTCTGGCTGTCGCTCGGGAATCGAACTAGCAGTCGTCTCGTACTCGGAATTTGTCATTTTTGCGATCTTCTGGTCGAGCACTCTCT TGCCCATCTCTAGCCGGCGGAGATACACCGGGTCCTGACCTTCTACCTCGCGCTCACGTGCAAGCTGACTAGCGATCTGGCTTCTGAAGC TCGTTTTGCCATATGCTTCAACGATCTGATTCCAGGTATCAGGATCGGCAAGCAGCTGGGAAGACTGGGAAGAGGACAGCACACGCCACAA TCTCCTTCAATAGCACAGCGACCACGCGACTTTGGATCATGCTTTCGTCTAGTAACATGGGTAACATGCGGACTAGCACTTTTCGGAGGT GCTCTTGTTCTAAGGGCTTGGTATCGGAGTAAGCGAGTGAGGCCGCCGGATGGAGATGGCCGTCCTTGTACTTTGCCGCCAATCGCTAGGT CCAGCTCTTCCGACTCTGGCAGATTACGGTTCAGAGCACGTCCTCGTACCACCCGCTCAGCGTTGTCAAATTCTCGCAAGTGACTCGTTA TGATGGGTACTACGCGCGCGCGCCATCATTTGTGACATCTTCCTGTAATATCCTGTCTCGAAGCTCTACCGCTGCCAGGCGTATGTTCT TGTCAACCTCGTTCACGAACGTAGGACTGTGCGAAATGGTTTTGTACCACGACGACGAGATGAAGCTTCGAAGTGCAAGATGAACCAATTGTC CAACGCCCTCGGAGACCAGTATAGAAGTGGGATGAAGTTGGAGAGGGTTGTACAGGAGGCTGGCCTGGTAACGCGCCTTGCTCAGCTGGCC ATATTGACGGTTTCGAGAAGGCAGGAATGGGCCTGCGCAAGGGTTTCGGAACAGTCTGAATACTCCTCGAAGTCGTCAATACAAGCATAA GCACAAGACAGGTAGCTGCAAGGCAACCGAAGAAGAATGCGTTTGCAAGGTGCCATAGGAACGGTGCCAGCCGTACAGCAATCCCCCCATG CTACAAGAGCAACGAAGCTAGAGAGGAGGAGAGCATGCGAGTGGTCGAGGGTCATcgtcggcagtcatgacgattgtgtgaatgcgccatcag ${\tt CGGTAAGCGACCGTTTAGGCGCCCGGCAAGTTCAATGTCCATCATCAATTTAGATTTgtacgtcgatcgtaagttgtattcggctatcca}$ acgtcccaggtcagtctggcgtcgacaataccctagatattcgtcgacgatggatcccgctactggtttctcctacaaccgcactttctaagcatcatcgtcctgctaaccgaggccgtcagCGTCACTATCCTTGCAAACTATCTAACCGTTAGAAGCGGCTTCAATCATCGTGAAAGCGAAGGCCGGCGCTGCATCGAGCTACCTCATTCGCTGGCAAGAGTGAAACAATTGAGAACAATTTATGCTCGTGCGAACGCGGGCTCTACG GAACTTCTGGCTTT...

Supplementary Sequence 5. K. petricola intergenic region 2 (igr2) (GenBank: OM802160).

Kp genome v1.0: Contig 1: 3,412,107 – 3,422,106 bp

...actgatgttcactaaatactagacccctgccagcacaccgatacatcgttcaatcctactgtagacgtgatatcccttacaagctca tggagctccatagcggcagtatgcggtgtaagtgctggtagttgaccgctgcagtcctgcacagctgttcgtgaacagctcctcgcacgcagtattgcctacttagctttaaacctaccgagccccttggattgagcacgtgcgtcaatgcagctgtgctggtcggcatttcactgctcctt caga a a g c g c t t g t c c g t g c c a g c t t a g c t c a a t c A T G G C T A C T G G C G T T T C C A T A T T G A G C C T C T T G f t a g c t c a g c t c g c t c g c t c g c t c g c t c g c c g c t c g c c g c t c g c c g c t c g c c g c t c g c c c g c cact ctacct tacga agc cat ctag ctg a att gg cccc gtg gtg t cg cctg cca gag a a agc at cat gt cg t g a g g c c t gg g c t t a c t agcgattgagaagtgatcttacgaagatgactcgctatgcatatcagggtcgattccgtgctcgctgtcgcatctcgtgatcatgcctagcgccaatggaggttagctaacagcaatcacagGCTATCAAAAAAGCAAACACTGCGGATACTGCAAGCAGAAAGATGGCAGCTGCTCGTAT TATATGTCCTGCGATAGTATGCGCGTTGACCACTATCAAGAGCTCATGGACCGAGGCTGGAGAAGGTCTGGCACTACGAACCA GATCTGCCACGGTCGTGTTGTCCACATTACACAATCAGGTTGAGAGCTTCTGACTTCAAAGCCAAGAAGGAACATCGCTCAGCAATTAAC CCGGCTCATAAGCTCGAAGTCAATCTCGAAGCCGACAGCTGCACCCAAGAAAAGCATGATGTAATGCTGAGATATCAAACCCAGATACAC AAGGACCCGGAAGGGCGATGGTCTGAAGCCTCCTTCAAGAGGTTTCTCTGCAACGGACTCGATAGAAAGGTTCTCAAGGTGAAGGGCAAG ACCATGAAGTTGGGATCTCATCACATGTGCTACCGACTTGACGGAAAACTAGTCGCCGTCGGTGTGCTTGACCTTCTGCCGCACGCTGTA AGTTCCGTCTATCTCTTCTACGACCCCGATTACCAGGAGTGGGACTGGGGCAAGATCAGCGCCTTACACGAAATTGCACTGGCACTAGAG AAGGGCTATGAGTACTACATGGGCTACTACATTCATTCGTGCACAAAGATGCGTTACAAGGGTCGATTTGAGCCTAGCTATATCCTG GATCCTGAGAGTCTCGAATGGAATCCGCTCGACGATGACTTCCGCAAAATGCTCGATGAGCGCAAATACGTTTCACTATCTGGTGATCGA AAGAGCCCCGAAAGGTGAAGATCTTGAGGTCGACTCTGATGTCTCCGAGCCTGATGACACAGAGATACCGGAAGGATCGTTGTTCGATTAC AATATACCAGGTGTCCTCAACAAGGGCGAGGTCGAAAACTTGAACCTTGGTCACATGAAATTGCTCGTTCGGACATCCTTAGTCGACTTA GAAGACCTTCGTGGCTGGGAAGAATGGCAGATTGACGATCCAGGAACGATCAAAGGCATTGCTGCAGAGCTAATCGCTACGACCGGGCCA AAACTGCTCAAGGACACAGGACTCTCTCTGTTTTAGgcacttgggcggtcagaaacaaaggagacgtaagatcatcctcaagcttacgat ${\tt ctacacgccgtatatgtacgcttcgctgtaaaaagattcgaaacccggaatgcactgcacacgtatcaaccgaaagctctacgaggctgg$ $gtacttgtattgacactatgatctaacgctgtcacagatgcgtttgcattcaccagtctatcctgccataaaagctc {\tt ATGGGACCCCGGTA}$ TGGTCTTCTACACTTACTTCCTTCTTTCGTACAGAAACTCAGCCTACAAGCCCAATTCATCCTCTCTCAGATCGCTGACAGGTGCACAAT ACACTGCGTGCAGAACCTCTTCTAGCACCTCATCCCTCCTTTCGTCGATACTCGGTCAGAGTCGGGTCTTGCCTTCTTCTCGATCCATCG CGGACCTCAATATGTTTGTCAGACCCTTCAGTGCAATGGCTCTTGCCTCGCTGATTGCCTTCGCCAGCACTGCAGAGTCGGCAAGACACA ACATCACATCTAGTGAAACGACCCCTTCTTCCCCCGAACTGCATTCTTGGTCTGAAATCTACAACAGTCTATTGTCCTCTGAATATCGATG ACCTAGATCCTTTGACCGACCTGACAGCCTTGCCCCTTCTCGAGGAACTCAATGAAGAATGGCGAGAAGTGACCGCTTTGGACCTGACTC CGCTCGTCTGCCTGTATGACCAAGGTCTTACGAACGATTGCCAAAAGAACTGGGGGATATTATTGCGATACCAATGGTGGCTTGCGTACGA TCTACTGTCAACGAAACATCCAGGACAAGTCGAAGCTTCTACCGTACGCATCTGAGATCATAGCGGTTGGGAAACTGCAGGACGACGACA ${\tt CGGGGGGAGTCCGAACCGGACCCTATGAAAGGAGCGATGTCGTCTCGGAAGATTACCAACTTACCTGAGGTCCGCGACTAGcaacagcgtg$ aaacacagtacacatacagcgaatacgccatggtctgcgccaacgacaaagacgctacattcacatgccagcgtaggggcggttactactgtaacaaaacaggtaaattgatacgagacaaaatcaaaggcgaatttcgaatacacacatgcgaagacgcttgtctatgctataacatgta a a a a gataggt cat caaga cactgt gt cg ct cac caag caatgga a a gaat cag a a a cg ag gg gg gg t ct cg cc g cattg a cg ag at a t cag at a t cag at a t cag ag at a t cag at at a t cag at at a t cag at a t cag at at a t cag atttcactgatcatgtgtgtggggaagagtgccgatgcatcgaccttcgtccgaagccgaaatgcatcttgtgggctgaacggcatgtcgtct tgtctgcgaaagcgtgatgaaggaatggccctagcggagaacaacatgcccgtggtgtgcatggacgatatagagatcaccaaagcgtgc

cagageteggacttccaatactattgcacgececeggggacaacttcagegtaatggtgctttcgttcaccaggtctgtcaggatgagtgtacaacagagtcaccgtcgactctcactat<mark>agctgctagtccataac|tcacgg</mark>tgatgactgtctgacgcaccagctcggccaacaggat gtatttctagttctttccgtaggtgcacaatcaacctgacagcagcttctggtgtgactacattacttagcagagcagatagaagagtgt gtatacttgatgcatatgtatctgagctgtctttgctagaccacccagactagaaggcgtgctactcacctttcgtctatcagttgatta $\verb"gcctgtagctcaggtcactgtccaaaaaggatgggagatgtttccttgttcggcactccacagtcctcgtcctccatgtttccatttagttccatttagttccatttagttccatttagtttccatttagtttccatttagtttccatttagttccatttagttccatttagttccatttagtttccatttagtttccatttagtttccatttagtttccatttagttccatt$ ${\tt ttggaccagtacctctcagcacccgaactcgtcttcttctggcaaagactggtcttgaacttcagatgctgcattctcagccgcgagttt$ gacggtcatcaaagaccttgaatgacatcgccatgccgatgaagttgactgcagcttgactggcatgtcttgattcacgtccaagacttcgggccgaggccagacggaatccggatttcagggggggctccagcaaacggatgctgctcccctaggacatacccaggccaacaccaccttcg ggcgccaaatttgcaaggataatactttttactcgggatttctgctctcaagttcgaacacaacacgagttcgaggataacctcgaatgcaacccaacqatttcqaacctaqaqttqtttaqcaaqaccatctcacacaqatatqcatqqtaacacaaqcaqatqcqtaqttactctaqa $a {\tt caacacccccccc} a {\tt gtcacccaaccccaccccaccccaTCATTCATCAGATGAGTCCTCCCGGATCGTGAAACCCTCAGGCTTAGGATAGCAGCATAGCAGCATAGCATAGCAGCAGCAGCATAGCATAGCATAGCATAGCAGCAGCAGCAGCAGCAG$ GGTGGCGGGCTCCTCAACCTTAGCTGCTCCCACCTTTCGCGCCTGTTCTTGATCTGCTTTCCAGGTAGCATAACCTCCAACTCGGGAAG AGCGTCGATTACCACCTGGTTGACCCTCTTGTCTGTCCATTTGCGAACCCACTTCACGGTCGCATCAACTACCGACTTATCAGCGCTTTT CTCCAAGCTTTGGACCAGGGCTTGTCCGTCTTCGAAAGCGTACAGGAGCGGCTGTGTTTCCATGAGGTGGGTATGTTGCTCTCGCAGTTG GTTTGCTGCCTGCGCTCTGTTTCGGTACATCTCGAGCAGCTGGTCCATCTCCGATCTTTCCTGCTCGAACTGTTGTCGGATGCTGTCCAT ATGCATTGTCATCTTACGAAGCGAAGCCTCCTCGGATATCTCAACGAGAAAAGCCTCATCCACAGTTTTAGCCATCCTGGGTTTCTTGGT TCCTTCTTGCTGGTTGTCATCAGACGATCTCTTTTGTCCCTGCTTCGTGTCTCGCTTCTCCCTTGGTGCCGCGCACCTCAACCGTTTTTCC CGCGTCCTGGATTGAGGTCTGCCGTTCGCTCAGTCTTCCGTGTTCGTGCTCACTCGAATCTCCCGTAGGTTTCTTCACCTTGCG GGTGCTCGGCGATTGCCACTTTGTCATTGGCATCTCGCTGTTGAACCATGCGTCCACGACGCACACAGGCTGCTTACCGTCGCTAAGCAT TCGATCGAACCAGTATGCACTTGTATTCAGTTGGATAGCGCTGTCCCAGAGGTTCTGGTAGGTCTTGCTCTTGTCGCGGGCCATCCACACC GTACCAGAAGACGATCCGCTCTCCGGTAACTTTCTCGTTCGGGTGGTATGGAAGCTCGTCGGCGCCGAAAGTCCATTCTTGCTTTGGTCC ATCTGTGACGGCCTGGCCACGTCGAACTTCCGTGGTACCCTGCCCCCTCACCTCGTTGTTGGGGGCCTGCTACACCTCGTAGGGTAGACTC TCTTCGGAAGGTTAGGAAGGATGCTTTAGAGTATCTGAACTTCCTACCTTCAAACTTGCCACCGAGGGCTACAGGTGCGTGTCCAAACAC CTCTCGGTCGGTGCGTGGAACCCCATTTTGTGTGAAAGTAAAAGGCCACCTCTTCGATCTTTCGGAGGCACTAAGCAAGACGGTGGCAAC GTATACCACCCAATCTTCCGGAGCTTCCTTTCCCTCCTTTGCTTTCTCGTAGATGGCAGAAGCCGGTATGTCTACAACATTGAGGCTGTC ACTTGGAGACCACCACGCGGCTTAGACCGTGTTTGGCAACTGGTGGGCCATCGAGTGCATGTTCTGGAACTTGGACCCCCCATGACTT GGGGGTCTTCAGTTTGAGCTTGTGGTTTGCGCTTTTTGCCATCTCGGTGGCTTCCGCTTGAGTAGGTTGGTCTCGATCGGTAGTTGACGA ATTGATCTGTAGACGTTGAGAGCGGTTATCGATCGTCGATTTAAGGGTGGGAGACTGGGTTGGGTCTTTCGCAGTTGTGCCTTTTAGGCG ${\tt CTCAAGTGTTCCCCCTTGCTGGAAGATCCTGCTGCCTTTCCTTCTATGATGTTGCATAAGTGTAGTGTCGTCTGAATCAGATGACAATTC}$ CACACCTTCTTCGCTTGATAGCTGGTCTCCTCCTGTATGCTCACGCGTAGCAGTACCATAAAAAGCCCTCTGGGTGGCAAGAGCCGTCTG GCCTGGTAGGAACCTTTCTCGGCTTGACGCCTGTATGTCGGGTAGAATTCCTAATCCACGATATTGTGCTTCTGCCCACTGTCGCGGTTG GGCCCGTCCTGCTAGCAGTGCTCCTAGCAACCGATCGTAGAACAATCTTCCGAACAGATTCGCACCGAGTGGCTCCTCTGTTTGACCGGC CATGCCTGGGATGAGTTTATGGTGGATGGCCATAAGACCTTGAATACGGGGATCATCCAGTCGGTATTGGTACGTCAACGCGTCCATCGC CAGCGGTAGCAGCTGGTCTAGGTCGTTAGGATCATCTTCTCCCGTCGCTTGAGGAGTACTCAACCACTCTTGCACGCGTTTTTCAGATGG TATACGTGACTCGGCGACAACTCCATCGTCTCCATCGTCTGGGCCGTTGGTCTCGAACCTCGAATAGGTTTGAAGTAGGAGTTCTGGTC GTGGTTATCGGCTTCAAACCTCTTCACTGGCCACTTGATACCGCGGTCCTCCCAGAGAAACCGCTGTGTATCGGTTTTCCAGACGATTCC GGATTTGACCAGACCTGCCTTGATGTCTTCCACTTCACAAGTACCACGCCTGATAGCTTTCAGCAGTTGCATAAAGAACCATTCCCCCCCA CCGTAACCGCTTTGGACCTCGCTGCTCTAGACTCACTAGATCCGATGGTCGTTTAGGGGCATAGCTCTGGTAGAAGGTGAGGAGATTGACGTAGCCCGTATCTGTGAAGGAGCAAAACTGCTTTTGTAGCTTACGATCCTTTTTATAGAGTGCCATCCAGTCGAAGTCTCGCGGCCACGG ${\tt CTCAGCGCCTCGCTTGGAACTCAT} {\tt cctggcagatttctcgctattcaccaggcagcaactaccttcaacactaatattccagcttgcgacactactcaactattcaccagcttgcgacactacttcaacactaatattccagcttgcgacactactattcaccagcttgcgacactactattcaccagcttgcgacactacttcaccagcttgcgacactactattcaccagcttgcgacactactattcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactactacttcaccagctgcacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagcttgcgacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagcttgcgacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagctgcacactacttcaccagctgcacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgacactacttgcgcacactacttgcgac$ caa accat caggtgtcctaccat acca agc cagtga a taact tctccccatgcttttctattccgtaccag caa atctcattcttcgtaccagca a tctcattcttcgtaccagca a tctcattcttcqtaccagca a tctcattcttcttcqtaccagca a tctcattcttcqtaccagca a tctcattcttcttcqtaccagca a tctcattcttcqtaccagca a tctcattcttcttcqtaccagca a tctcattcttcttcqtaccagca a tctcattcttcttcqtaccagca a tctcattcttcttcqtaccagca a tctcattcttcqtaccagca a tctcatttcttcqtaccagca a tctcatttgatcgcatttacaa...

4 Supplementary References

- Bluhm, B., Kim, H., Butchko, R., and Woloshuk, C. (2008). Involvement of ZFR1 of *Fusarium verticillioides* in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. *Mol Plant Pathol* 9(2), 203-211. doi: 10.1111/j.1364-3703.2007.00458.x.
- McCluskey, K., Wiest, A., and Plamann, M. (2010). The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. *J Biosci* 35(1), 119-126. doi: 10.1007/s12038-010-0014-6.
- Nai, C., Wong, H.Y., Pannenbecker, A., Broughton, W.J., Benoit, I., de Vries, R.P., et al. (2013). Nutritional physiology of a rock-inhabiting, model microcolonial fungus from an ancestral lineage of the Chaetothyriales (Ascomycetes). *Fungal Genet Biol* 56, 54-66. doi: 10.1016/j.fgb.2013.04.001.
- Nødvig, C.S., Hoof, J.B., Kogle, M.E., Jarczynska, Z.D., Lehmbeck, J., Klitgaard, D.K., et al. (2018). Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in *Aspergilli. Fungal Genet Biol* 115, 78-89. doi: 10.1016/j.fgb.2018.01.004.
- Nødvig, C.S., Nielsen, J.B., Kogle, M.E., and Mortensen, U.H. (2015). A CRISPR-Cas9 system for genetic engineering of filamentous fungi. *Plos One* 10(7), e0133085. doi: 10.1371/journal.pone.0133085.
- Schumacher, J. (2012). Tools for *Botrytis cinerea*: new expression vectors make the gray mold fungus more accessible to cell biology approaches. *Fungal Genet Biol* 49(6), 483-497. doi: 10.1016/j.fgb.2012.03.005.
- Sweigard, J., Chumley, F., Carroll, A., Farrall, L., and Valent, B. (1997). A series of vectors for fungal transformation. *Fungal Genet Newsl*, 52-53. doi: 10.4148/1941-4765.1287.
- Voigt, O., Knabe, N., Nitsche, S., Erdmann, E.A., Schumacher, J., and Gorbushina, A.A. (2020). An advanced genetic toolkit for exploring the biology of the rock-inhabiting black fungus *Knufia petricola. Sci Rep* 10(1). doi: 10.1038/s41598-020-79120-5.