Table S1: Reported error rates in original articles (=primary data) and reviews for next generation sequencing platforms
	Company / Platform
	Error rate [%]
	Primary data
	Reference

	Roche 454
	1
	No
	Glenn, 2011

	
	1.1
	Yes
	Gilles et al., 2011

	
	4 
	Yes
	Margulies et al., 2005

	
	< 1
	No
	Thompson and Milos, 2011

	
	0.25
	Yes
	Huse et al., 2007

	
	0.4
	Yes
	Quinlan et al., 2008

	
	1.1
	Yes
	Lind et al., 2010

	
	0.4 – 0.5
	Yes
	Niu et al., 2010

	
	0.4
	Yes
	Quince et al., 2011

	
	0.11 – 0.34
	Yes
	Vandenbroucke et al., 2011

	
	approx. 0.4
	Yes
	Loman et al., 2012

	
	0.46
	Yes
	Jünemann et al., 2013

	Illumina
	0.5
	No
	Mardis, 2013

	
	<0.1 for >85% of reads
	No
	Glenn, 2011

	
	<2
	No
	Liu et al., 2012

	
	1 – 1.5
	No
	Shendure and Ji, 2008

	
	< 1
	No
	Thompson and Milos, 2011

	
	0.6 - 1
	Yes
	Dohm et al., 2008

	
	1.3
	Yes
	Hillier et al., 2008

	
	0.26 - 0.80
	Yes
	Quail et al., 2012

	
	< 0.8
	Yes
	Quail et al., 2008

	
	2.5 – 7.3
	Yes
	Minoche et al., 2011

	
	5.2 – 6.0
	Yes
	Nguyen et al., 2011

	
	approx. 0.1
	Yes
	Loman et al., 2012

	
	0.09
	Yes
	Jünemann et al., 2013

	Ion PGM
	1
	No
	Mardis, 2013

	
	0.46 – 2.4
	No
	Glenn, 2011

	
	0.5
	Yes
	Merriman et al., 2012

	
	approx. 1.5
	Yes
	Loman et al., 2012

	
	1.71
	Yes
	Quail et al., 2012

	
	1.68 – 4.84
	Yes
	Bragg et al., 2013

	
	0.42 – 0.79
	Yes
	Jünemann et al., 2013
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Table S2: Amplicon sequencing studies targeting the phyllosphere microbiota based on NGS technology
	Sequencing technology
	Target group
	Target gene
	Sequencing adapter addition
	Sequencing statistics
	Plant species and type of sample 
	Major findings
	Reference

	Illumina, MiSeq, 
250 bp paired end
	Bacteria and fungi
	16S rRNA, V4; ITS1
	Barcoded primers, adapter addition by sequence provider
	· 5,120,803 filtered bacterial reads and 3,241,736 filtered fungal reads
	273 grape must samples from eight wineries representing four major grape growing regions of California
	· regional, site-specific, climatic and grape variety factors shaped the fungal and bacterial microbiota inhabiting wine-grape surfaces
	Bokulich et al., 2014

	Roche 454
	Bacteria
	16S rRNA, V4 to V6

	Fusion primers
	· 505,082 raw reads 
· 346,866 filtered reads
	Rosettes of greenhouse grown Arabidopsis thaliana plants
	· successional dynamics over a period 73 days: phyllosphere communities initially mirrored airborne communities, they subsequently converged to a distinct community composition
	Maignien et al., 2014

	Roche 454
	Bacteria and fungi
	16S rRNA, V5-V9;
ITS

	Fusion primers
	· 30,515 filtered bacterial reads and 134,172 fungal reads
· 40 – 3,294 bacterial and 1,353 – 9,303 fungal reads per sample 
· mean length of 750 bp for bacterial and 650 bp for fungal reads
	Leaf samples of grapevine (Vitis vinifera) treated with chemical fungicide or biological control agent , taken from three vineyards in Italy
	· bacterial and fungal  communities were only minimally affected by chemical and biological treatments, 
· they mainly differed according to sampling site location
	Perazzolli et al., 2014

	Roche 454
	Bacteria and fungi
	16S rRNA, V6;
ITS2 and D2

	Fusion primers
	· 142,096 raw reads
· 139,034 filtered reads; 79,398 for fungi (ITS2 plus D2) and 59,636 for bacteria
· 2,070 – 9,462 reads per sample
	Leaves of grapevine (Vitis vinifera) from a vineyard in Portugal collected over the growing season
	· microbial communities were shown to be highly structured and dynamic
· the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae
	Pinto et al., 2014

	Roche 454
	Bacteria
	16S rRNA, V4 
	Addition of barcodes and adapters in a 2nd PCR
	· 35,965 filtered reads

	Leaves and roots of tomato (Solanum lycopersicum) grown in productive greenhouses
	· leaf endophytic communities strongly differed from those of the rhizosphere
	Romero et al., 2014

	Roche 454
	Fungi
	ITS1

	Addition of barcodes in a 2nd PCR (6 cycles); adapter addition by sequence provider
	· 204,052 raw reads 
· 51,596 filtered reads
· 1,388– 3,057 reads per sample
	Garden grown balsam poplar (Populus balsamifera) genotypes
	· host genotype shaped the foliar fungal microbiome 
	Bálint et al., 2013

	Roche 454
	Bacteria
	16S rRNA, V5 to V7
	Fusion primers
	· mean read number 8,090 per sample
· minimum of 4,329 sequences per sample
	Rosettes and roots of naturally grown Arabidopsis thaliana plants from four sites
	· bacterial communities differ between leaves and roots
· different epi- and endophytic communities
· leaf and root endophytic communities do not differ in richness, diversity and evenness, but in community composition
· taxa with highest relative abundance are related to culturable species
	Bodenhausen et al., 2013

	Ion PGM,
316 Chip
	Fungi
	ITS1

	Fusion primers
	· 2,394,051 raw reads 
· liberal filtering: 461,596 reads
· stringent filtering: 86,556 reads
· mean read length 137 bp 
	Leaf, petiole, twig,
and trunk samples from Eucalyptus grandis, South Africa
	· highly diverse families from across the Kingdom Fungi co-occurred within a few samples of plant tissue
· communities were dominated by Ascomycota
	Kemler et al., 2013

	Roche 454
	Bacteria
	16S rRNA 
	Adapter addition by sequence provider
	· 50,299 filtered reads 
· 2,515 reads per sample
· read length >200 bp
	Organic and conventionally grown leafy salad vegetables  (baby spinach, romaine lettuce,
red leaf lettuce, iceberg lettuce and green leaf lettuce)
	· no significant differences in bacterial community composition on leaves of organic versus conventionally grown vegetables
· the dominant taxa from sequence data were also detected by culture-dependent methods
	Jackson et al., 2013

	Roche 454
	Bacteria
	16S rRNA, V4
	Fusion primers
	· between 17,341 and 35,503 raw reads per sample
	Spermosphere and phyllosphere of spinach (Spinacia oleracea) seedlings and plants
	· bacterial richness higher on seedlings than on seeds and cotyledons
	Lopez-Velasco et al., 2013

	Roche 454
	Bacteria
	16S rRNA, V3 to V5
	Fusion primers
	· 193,289 raw reads 
· 90,815 filtered reads 
· 2,343 - 10,010 reads per sample 
	Arabidopsis thaliana leaf wax mutants grown outdoor
	· altered bacterial phyllosphere community composition on cuticular wax mutants
	Reisberg et al., 2013

	Roche 454
	Bacteria
	16S rRNA, V5 and V6
	Unknown
	· 225,243 raw reads
· 171,996 filtered reads
· 50,865 reads after removing singletons
· 1,838 – 10,776 reads per sample
· Mean read number 5,733 per sample
· Rarified to 1,838 reads per sample
· Mean read length 335 bp
	Flowers from six apple trees (Malus domestica)collected at five time points; streptomycin application to half of the trees when flowers opened
	· bacterial communities dominated by members of TM7 and Deinococcus-Thermus
· observation of a successional pattern and less abundant transient taxa
· communities on trees sprayed with streptomycin had slightly lower phylogenetic diversity, but no differences in structure or succession
	Shade et al., 2013

	Roche 454
	Bacteria and fungi
	ITS;
16S rRNA

	Fusion primers
	· 50,835 ITS raw reads and 19,560 16S rRNA raw reads 
· 34,045 filtered ITS reads and 8,425 16S rRNA reads
· 172 – 1,890 reads per sample
	Strawberry (Fragaria x ananassa) treated with biological control agents against Botrytis cinerea
	· altered fungal community composition at class level upon treatment with one of the tested biological control agents
· no effects on bacterial community composition
	Sylla et al., 2013

	Roche 454
	Bacteria
	16S rRNA,  V5 to V9
	Fusion primers
	· mean read number 5,116 per sample
	Field grown Romaine  lettuce from different plantings, inoculated with attenuated strain of Escherichia coli O157:H7
	· bacterial diversity differed in dependence of irrigation method, season, plant age, and in presence or absence of E. coli
	Williams et al., 2013

	Roche 454
	Bacteria
	16S rRNA 
	Barcoded primers, adapter addition by sequence provider
	· from only few sequences to 4,000 per sample 
· rarefied to 200 reads per sample
	Conventional and organic analogs of eleven store-bought fruits and vegetables (sprouts, spinach, lettuce, tomatoes, peppers, strawberries, apples, peaches, grapes, and mushrooms)
	· certain products shared more similar communities (high relative abundances of Enterobacteriaceae) compared to others (dominated by Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria)
· differences in community composition between conventional and organic analogs within product types; relative abundances of Enterobacteriaceae taxa less abundant in organically-grown products
	Leff and Fierer, 2013

	Roche 454
	Bacteria and fungi
	16S rRNA, V2;
18S rRNA
	Fusion primers
	· 92,695 filtered 16S rRNA reads and 194,260 18S rRNA reads 
· mean read number per sample 3862 for 16S rRNA and 8094 for 18S rRNA amplicons
	Leaves, stems, roots, flowers and fruits of outdoor grown tomato (Solanum lycopersicum)
	· distinct microbial communities on different tomato plant organs 
· differences related to distance of the plant part from the soil
	Ottesen et al., 2013

	Roche 454
	Fungi
	ITS1
	Barcoded primers, adapter addition by sequence provider
	· 1,285,911 raw reads 
· 953,385 filtered sequences
· mean read number 28,040 per sample
	Leaf and stem samples of pine tree Pinus sylvestris and its parasite Viscum
album

	· interannual changes in endophytic community composition are smaller than seasonal changes
· composition depends on host species and organ type, locality has a minor impact

	Peršoh, 2013

	Roche 454
	Fungi
	ITS1

	Fusion primers
	· see Cordier et al 2012a
	Beech (Fagus sylvatica) phyllosphere; data from the study of Cordier et al 2012a were used in this study
	· underrepresentation of phytopathogenic and -parasitic ascomycetes, lichenized fungi and some basidiomycete taxa in cultivation-dependent approaches
	Unterseher et al., 2013

	Roche 454
	Fungi
	ITS1 and ITS2; 
16S rRNA, V5 and V8 
	Adapter addition by ligation
	· 294,102 raw reads
· 209,544 filtered reads
· 1237 - 8046 reads per sample
· mean read length 318 bp 
· sequencing of libraries from both ends
	Avicennia marina and Rhizophora stylosa trees in a mangrove in New Caledonia
	· host-specific highly diverse fungal communities on the two mangrove tree species in aerial and intertidal parts
	Arfi et al., 2012

	Roche 454
	Fungi
	ITS1
	Fusion primers
	· mean read number of 2,400 and 6,195 for two datasets
· 75 – 4,033 and 946 – 20,493 reads per sample for the two datasets
	European beech (Fagus sylvatica) at four sites over a gradient of 1000 m of elevation in the French Pyrénées Mountains
	· fungal community composition varied at sites of different elevation
	Cordier et al., 2012b

	Roche 454
	Fungi
	ITS1

	Fusion primers
	· 96,130 filtered reads
· 123,163 raw reads
· mean of 3,560 reads per sample
· 386 – 6920 reads per sample

	Samples from European beech Fagus sylvatica of four different spatial scales: tree, branch, group of leaves and individual leaf
	· major part of the variability was at the smallest spatial scale, i. e. between individual leaves
· at larger scale, genetic variation of trees affected phyllosphere fungal assemblages
	Cordier et al., 2012a

	Roche 454
	Fungi
	ITS2
	Nested PCR approach with fusion primers in 2nd PCR
	· 491,280 raw reads 
· 327,273 filtered reads
· mean of 1,031 reads per sample
· 502 – 2,423 reads per sample
	Seasonal sampling of three bryophyte species in a Norwegian forest: Hylocomium splendens, Pleuroium schreberi and Polytrichum commune
	· seasonal dynamics and host-specific patterns were observed besides effects of locality and tissue
	Davey et al., 2013

	Roche 454
	Bacteria
	16 S rRNA, V4-V6
	Fusion primers
	· 163,895 filtered reads 
· rarified to 8,700 reads per sample 
· mean read length 481 bp

	Leaves of Tamarix aphylla trees, collected from a transect (500 km) in the Soronan desert
	· diverse bacterial communities with four dominant phyla 
· geographical distance was the most important parameter that affected community composition
	Finkel et al., 2012

	Roche 454
	Bacteria
	16S rRNA, V1–V3
	Fusion primers
	· 21,930 filtered reads 
· mean of 1,327 reads per sample
· 553 – 2,281 reads per sample 
· mean read length 431 bp
	Leaves of six species of tropical trees
at a rainforest arboretum in Malaysia (Arytera littoralis, Schizostachyum brachycladum, Dillenia excela, Dyera costulata, Gnetum sp. shorea maxima)
	· each tree species had a distinctive bacterial phyllosphere community
· more similar communities on more closely related hosts
· Acidobacteria were one of the most abundant phyla across all samples
	Kim et al., 2012

	Roche 454
	Bacteria
	16S rRNA 
	Fusion primers
	· 165,259 filtered reads 
· mean of 9,486 reads per sample
· 5,852 – 12,836 reads per sample
	Leaves of tomato (Solanum lycopersicum) from three different locations in Florida
	· enrichments of Salmonella changes the taxonomic profile of a sample but does not necessarily increase detectability of Salmonella
	Pettengill et al., 2012

	Roche 454
	Bacteria
	16S rRNA, V5 - V7
	Fusion primers
	· 818,013 filtered reads
· mean of 9,296 reads per sample
· rarified to 2,836 reads per sample
	Field-grown Romaine lettuce from California and Arizona
	· differences in bacterial communities were related to season and field location, but not to plant cultivar
	Rastogi et al., 2012

	Roche 454
	Fungi
	ITS1
	Barcoded primers, adapter addition by sequence provider
	· 665,155 filtered reads
· Mean of 5,117 reads per sample
· mean trimmed read length 157 bp
	Endophytic fungi in leaves of Metrosideros polymorpha across environmental gradients but short geographic distance on Hawaii
	· high diversity within sites and even higher diversity between sites
· variation between sites correlated with temperature and rainfall
	Zimmerman and Vitousek, 2012

	Roche 454
	Bacteria
	16S rRNA, V1-V2, 
	Fusion primers
	· minimum of 1,300 reds per sample
	Leaves of four Weinmannia tree species from a montane elevational gradient in eastern Peru
	· tree associated phyllosphere bacteria exhibited no significant elevational gradient in diversity (in contrast to the plants)
	Fierer et al., 2011

	Roche 454
	Bacteria, Archaea and fungi
	16S rRNA, V6;
18S rRNA, V9 
	Fusion primers
	· 158,980 filtered bacterial reads, 48,673 fungal reads, and 27,388 archaeal reads
· mean of 11,355 bacterial reads per sample
· read length of approx. 60 bp 
	Leaves from three Tamarix tree species grown in Mediterranean and
Dead Sea region
and two locations in the USA along ecological gradients
	· microbial communities on different Tamarix species grown in the same location were highly similar, while trees of the same species growing in different climatic regions hosted distinct microbial communities
	Finkel et al., 2011

	Roche 454
	Bacteria
	16S rRNA, V5 and V6
	Fusion primers
	· 37,474 filtered reads
· mean read number of 3,737 per sample
· 1,726 – 6,343 reads per sample
· rarified to 1,600 reads per sample
· mean read length 465 bp
	Grape leaves and berries collected from a vineyard
	· bacterial communities differed on the surface of leaves and berries
	Leveau and Tech, 2011

	Roche 454
	Bacteria
	16S rRNA, V4
	Fusion primers
	· 14,686 – 24,294 raw reads per sample
· mean read length of 200 bp
	Freshly harvested and stored spinach (Spinacia oleracea)
	· refrigerated conditions decreased species richness, diversity and evenness.
· growth inhibition of Escherichia spp. Was achieved at 4°C, but not at 10°C 
	Lopez-Velasco et al., 2011

	Roche 454
	Bacteria and fungi
	16S rRNA, V1-V2; 
ITS
	Fusion primers
	· 24,445 filtered bacterial reads 
· mean read length 475 bp for bacterial reads 
· no data for fungal reads
	Atriplex canescens and Atriplex torreyi callus cultures
	· micropropagated cultures were colonized by different bacterial and fungal taxa
	Lucero et al., 2011

	Roche 454
	Bacteria
	16S rRNA, V1-V3 
	Fusion primers
	· 27,757 filtered reads 
· mean of 1,734 reads per sample
	Fruit surface of field grown tomatoes (Solanum
lycopersicum) irrigated with water from different sources
	· bacterial communities on tomato fruit surfaces did not differ in dependence of the irrigation water source
	Telias et al., 2011

	Roche 454
	Fungi
	ITS2 
	Fusion primers
	· 105,838 raw reads
· 84,956 filtered reads  
· mean of 1,259 reads per sample
· mean read length 268 bp  
	Leaves of oak (Quercus macrocarpa) from six sites in urban and nonurban environments collected over a growing season 
	· fungal communities were temporally dynamic
· communities were diverse and differed between the urban and nonurban stands, albeit not consistently across the growing season
	Jumpponen and Jones, 2010

	Roche 454
	Bacteria
	16S rRNA, V1 and V2
	Fusion primers
	· 31,373 filtered reads
· mean read length 215 bp, ranging from 150 to 316 bp
	Pitcher plant fluid from Sarracenia alata

	· high bacterial richness
· increase in diversity and abundance with time
· bacterial community composition changes over time
	Koopman et al., 2010

	Roche 454
	Bacteria
	16S rRNA, V5 and V6
	Fusion primers
	· 115,394 filtered reads
· 600 – 1500 reads per sample
· minimum of 600 reads per sample 
· mean read length of 240 bp
	Leaves of 56 tree species in Colorado, and needles of Pinus ponderosa from various locations of the world


	· higher variability in community composition between different tree species than within
· correspondence between tree phylogeny and bacterial community phylogeny
· minimal geographic differentiation across continents
	Redford et al., 2010

	Roche 454
	Fungi
	ITS1
	Fusion primers
	· 18,020 filtered reads
· 9,168 and 8,852 reads per sample
· mean read length of 265 bp

	Leaves of oak (Quercus macrocarpa) located within and outside a small urban center
	· fungal phyllosphere communities were extremely diverse and strongly dominated by ascomycetes
· fungal communities  on plants from the urban center showed lower richness and diversity
	Jumpponen and Jones, 2009
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