
Supplementary Material

1 LATTICE GEOMETRY
The definitions of the three lattices are shown in Fig. S1a. Algorithms used to generate the hinge locations
for each lattice can be found below. The rectilinear lattice refers to the typical kirigami lattice structure of a
parallel grid aligning the hinges and profiles with the direction of the applied axial strain. As this is the
standard kirigami pattern, there is no strategy for increasing lateral friction other than the rotation of the
scales with respect to surface asperities inherent upon the bending of the actuator. This lattice is defined
by a lattice length, L, lattice angle, ϕ, and a hinge width, δ. The geometric relationship between these
parameters result in a uniform column width, W = l cos(ϕ/2) and a row height of scales H = l sin(ϕ/2).
The hinge locations can be identified by (x, y) coordinates based on the values of the described parameters.
Since we are comparing this standard kirigami lattice to our newly created lattices, maintaining consistent
parameter values is necessary. The following lattices are built based on these described parameter values.

The polar lattice is defined by polar coordinates rather than rectilinear coordinates. A radius R defines
the shape of the rows which are offset by the same row height H defined by the rectilinear lattice. An
angle, θlattice defines the orientation and spacing of the columns. The hinge locations are defined by the
(R, θlattice) coordinates. An additional parameter, K, defines a negative y-displacement from the origin
(center, bottom of the lattice pattern shown in Fig S1a). of the polar lattice in which to define the center
point of the radius. This is necessary because as you move axially along the lattice, the columns get closer
together. This parameter K controls the smallest and largest scale size along the length of the lattice.
The lower bound of K is limited by the point at which scales will intersect one another, and the lattice
structure would breakdown. The change in scale size along the skin complicates our implementation
of a soft snake robot as this creates a gradient of stiffness along the longitudinal axis which results in
non-constant curvature. More importantly, the larger the scale, the less stiff it is, so interactions with an
asperity on a surface will be relatively weak as the scale size increases. The specific micro-mechanics of
asperity-scale interaction is beyond the scope of the current work, but opens up intriguing new mechanical
design questions, as detailed in the discussion and conclusion.

The curvilinear lattice is a combination of the rectilinear and polar lattices. To prevent the change in scale
size along the skin as is apparent with the polar lattice, the parallel columns from the rectilinear lattice were
maintained while curved rows from the polar lattice were implemented. The rows of scales are defined by a
radius, R and the columns are defined by the same column width W from the rectilinear lattice. Hinge
locations are defined by the intersection of the radius, with the parallel columns.

As the goal is to maximize lateral friction by orienting the scales as close to lateral as possible, an
additional circumferential translation of the scale tips was implemented on the curvilinear lattice and is
defined by arc angle ζ = 5◦ as shown in Fig. S1b. As the ventral and part of the ventro-lateral portions of
the skin are the only parts in contact with surface asperities, that was the only area of the curvilinear lattice
where additional scale tip circumferential translations were implemented. Performing a circumferential
translation of the scales caused a decrease in hinge width that would lead to the intersection of cuts if

1

Supplementary Material

Figure S1: a) Kirigami lattice patterns with broken out unit cell and hinge definitions. b) Additional
circumferential translation parameter used on curvilinear lattice to further push scale tip towards lateral
ideal.

2

Supplementary Material

Figure S2: Plot of raw data collected from drag experiments to determine friction of skins on actuator.

propagated across the entire width of the skin. By keeping the additional circumferential translation of the
scales to high interaction locations, the integrity of the skin is maintained.

2 FRICTION DATA PROCESSING
The drag experiments described in the manuscript resulted in force vs. displacement data. This experimental
data was used to calculate friction in the cranial, caudal, and lateral directions of the skin as it was pulled
across a rough surface. The scales on the skin would engage with an asperity on the surface producing
high reaction forces until a maximum was reached and the scale disengaged from the asperity. This results
in a stick-slip phenomenon. The plot in Fig. S2 shows a sample of the force-displacement data collected
illustrating stick-slip. We took the average over several iterations of stick-slip as a way to estimate dynamic
friction. We then took the average over ten trials for each skin, bend angle, and surface combination.
The caudal friction data was divided by the cranial friction data for each combination to produce the
caudal:cranial friction ratio. The same was done for the lateral friction data to produce the lateral:cranial
ratio.

3 FRICTION RATIO WITH ROBOT WITHOUT SKIN
The plots shown in Fig. S3 provide a comparison of the frictional ratios of the skins designed in this work
with a robot without skin. It is difficult to make a direct comparison because the surface interaction of the
robot without skin is adhesion, which relies on surface area engagement. As seen in the plots, there is no
frictional anisotropy (ratios greater than 1) present in the robot without skin for the caudal-cranial ratio.
The lateral-cranial ratio shows some frictional anisotropy for the lower bend angles because more of the
surface was oriented perpendicular to the drag direction. Due to the effects of adhesion, this increased the
drag force of the robot as it was pulled across the test surface. Biological snakes rely on sliding friction as
their primary surface interaction which is what motivated this work. The skins were designed to remove
any effects from adhesion, and introduce frictional anisotropy present on biological snake skin.

4 ALGORITHMS
The algorithms shown below outline the method for generating the hinge locations for both the unit cell,
and the full lattice, of each lattice type. The values of R and θlattice are used to determine which lattice

Frontiers 3

Supplementary Material

Figure S3: Plots of anisotropic friction ratios including robot without skin

is being used. If R → ∞ that implies that the rows are horizontal lines rather than radii, and therefore
reference the typical rectilinear lattice. Any other value of R can be used to generate one of the curved
lattices. θlattice is then used to determine whether the desired lattice is curvilinear or polar. If θlattice = 0
then that means the columns are vertical as they are in the rectilinear lattice, which then determines that the
desired lattice is curvilinear. Any other value of θlattice can be used to generate the polar lattice.

4.1 Notes for Algorithms 2 and 3
Nested FOR loops, as used for the polar lattice algorithm, can be used for patterning the unit cells for

the other two lattices. We left them broken out here to emphasize how the unit cell is defined. Using the
nested FOR loops simplifies the definition of the Middle Hinges[1](X,Y) as the first (X,Y) pair in the
Middle Hinges array is the center point of the unit cell that then gets translated to make the rest of the
tessellated structure. However, leaving the unit cell as a separate definition helps to show that only the
curvilinear and rectilinear lattices have unit cells whereas the polar lattice does not.
4.2 Notes for Algorithms 3 and 4

The curvilinear lattice is a hybrid of the rectilinear lattice and the polar lattice. That means that the
linear columns from the rectilinear lattice are maintained with curvilinear rows. Because we started with
the rectilinear lattice, we carry over the column and row spacing as defined there (Xoff = 2l cos(ϕ/2)
and Yoff = l sin(ϕ/2)) to compare them directly in use on the robot. However, this is arbitrary. Both the
column and row spacing can be chosen at will. The rectilinear lattice is defined by a lattice width l and
lattice angle ϕ, which then define the column and row spacing. The selection of l and ϕ is arbitrary though.
There is no reason the column and row spacing have to be the same across lattices, that’s just what we did
to make a proper comparison in performance. For those not starting from the rectilinear lattice, using l and
ϕ doesn’t make sense. Instead, Xoff and Yoff values can be defined directly. This is also true for the polar
lattice which departs even further from the original rectilinear lattice strategy.

4

Supplementary Material

Algorithm 1: Hinge Locations for all Lattices
Input: l, ϕ, R, θlattice,M,N,K
Output: (X,Y) Coordinates for the hinge locations for selected lattice
Parameters
l = lattice spacing ϕ = lattice angle
R = radius θlattice = angle between columns
M = skin width N = skin length
K = negative y-displacement from origin for center of radii
Xoff = 2l cos(ϕ/2) : distance between columns
Yoff = l sin(ϕ/2) : distance between rows

(X,Y) Output Arrays
Top Hinges [] : array of hinge locations for middle row
Middle Hinges [] : array of hinge locations for middle row
Bottom Hinges [] : array of hinge locations for middle row

if θlattice = 0 && R → ∞ then
rectilinear lattice(Xoff , Yoff ,M,N)

end

if θlattice = 0 then
curv lattice(R,Xoff , Yoff ,M,N)

end

else
pol lattice(R, θlattice, Yoff ,M,N,K)

end

Algorithm 2: rectilinear lattice (Xoff , Yoff ,M,N)
Result: (X,Y) Coordinates for the hinge locations on the rectilinear lattice
Unit Cell Definition
Middle Hinge [1] = (0 , 0)
Top Hinges [1] = (Xoff/2, Yoff);
Top Hinges [2] = (−1 ∗Xoff/2, Yoff);
Bottom Hinges [1] = (Xoff/2,−1 ∗ Yoff);
Bottom Hinges [2] = (−1 ∗Xoff/2,−1 ∗ Yoff);

Pattern unit cells along width and length of skin
for m = 1:M (rounded to nearest integer) do

for n = 1:N (rounded to nearest integer do
(Middle Hinges [1] X += Xoff ∗m, Middle Hinges [1] Y += 2Yoff ∗ n) ;

end
end

Frontiers 5

Supplementary Material

Algorithm 3: curv lattice (R,Xoff , Yoff ,M,N)
Result: (X,Y) Coordinates for the hinge locations on the curvilinear lattice
Unit Cell Definition
Middle Hinges [1] = (0 , r)
for i = 1:1/2M / Xoff (rounded to nearest integer) do

Middle Hinges Right [i+1] = (Xoff ∗ i,
√

R2 − (Xoff ∗ i)2);
Middle Hinges Left [i+1] = (−Xoff ∗ i,

√
R2 − (Xoff ∗ i)2);

Top Hinges Right [i+1] = (Xoff ∗ i−Xoff/2,
√

R2 − (Xoff ∗ i−Xoff/2)2 + Yoff);
Top Hinges Left [i+1] = (−Xoff ∗ i−Xoff/2,

√
R2 − (Xoff ∗ i−Xoff/2)2 + Yoff ;

Bottom Hinges Right [i+1] = (Xoff ∗ i−Xoff/2,
√

R2 − (Xoff ∗ i−Xoff/2)2 − Yoff);
Bottom Hinges Left [i+1] = (−Xoff ∗ i−Xoff/2,

√
R2 − (Xoff ∗ i−Xoff/2)2 − Yoff);

end
Middle Hinges = [Middle Hinges Right Middle Hinges Left];
Top Hinges = [Top Hinges Right Top Hinges Left];
Bottom Hinges = [Bottom Hinges Right Bottom Hinges Left];
Pattern unit cells along length of skin
for i = 1:N (rounded to nearest integer) do

(Middle Hinges [1] X, Middle Hinges [1] Y += 2 ∗ Yoff);
end

Algorithm 4: pol lattice (R, θlattice, Yoff ,M,N,K)
Result: (X,Y) Coordinates for the hinge locations on the polar lattice

Full lattice pattern generation (unit cell undefinable)
for n = 0:N (round to nearest integer) do

R = R + Yoff ∗ n;
for m = 0:1/2M / R sin θlattice (rounded to nearest integer) do

i = odd numbered m’s;
Middle Hinges Right [m] =
((R− Yoff) sin(θlattice/2 ∗ i), (R− Yoff) cos(θlattice/2 ∗ i)−K);

Middle Hinges Left [m] =
((R− Yoff) sin(−θlattice/2 ∗ i), (R− Yoff) cos(θlattice/2 ∗ i)−K);

Top Hinges Right [m+1] = (R sin(θlattice ∗m), R cos(θlattice ∗m)−K);
Top Hinges Left [m+1] = (R sin(−θlattice ∗m), R cos(θlattice ∗m)−K);
Bottom Hinges Right [m+1] =
((R− Yoff ∗ 2) sin(θlattice ∗m), (R− Yoff ∗ 2) cos(θlattice ∗m)−K);

Bottom Hinges Left [m+1] =
((R− Yoff ∗ 2) sin(−θlattice ∗m), (R− Yoff ∗ 2) cos(θlattice ∗m)−K);

end
end
Middle Hinges = [Middle Hinges Right Middle Hinges Left];
Top Hinges = [Top Hinges Right Top Hinges Left];
Bottom Hinges = [Bottom Hinges Right Bottom Hinges Left];

6

	Lattice Geometry
	Friction Data Processing
	Friction Ratio with Robot Without Skin
	Algorithms
	Notes for Algorithms 2 and 3
	Notes for Algorithms 3 and 4

