
Supplementary Material for: Experimental
investigation of quantum uncertainty relations with
classical shadows

1 DERIVATIONS OF QUANTUM UNCERTAINTY RELATIONS IN TERMS OF
RELATIVE ENTROPY OF COHERENCE

Considering a two-particle system, where particle A is the particle of interest entangled with a
particle B acting as quantum memory, Berta et al. (2010) proposed to use the conditional Von
Neumann entropy H(A|B)(H(B|B)) to characterize the uncertainty of measurement outcomes of
observable A(B) obtained in the presence of information in B. The entropic uncertainty relations
proposed by Berta et al. (2010) is

H(A|B) + H(B|B) ≥ − log2 c + H(A|B), (S1)

where H(A|B) is the conditional Von Neumann entropy between A and B. By considering particle
B as a purification of particle A, Yuan et al. (2015) proved

CA
RE(ρA) = H(A|B) = H(A) − SVN(ρA)

CB
RE(ρA) = H(B|B) = H(B) − SVN(ρA).

(S2)

Thus, Eq. S1 can be expressed in terms of the reletive entropy of coherence

CA
RE(ρ) + CB

RE(ρ) ≥ − log2 c − SVN(ρ). (S3)

The entropic uncertainty relations proposed by Sánches-Ruiz (1998) and Korzekwa et al. (2014)
are
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(S4)
H(A) + H(B) ≥ − log2 c + SVN(ρ)[2 + log2 c], (S5)

with c′2 = c = maxi,j |⟨ai|bj⟩|2. Using h(x) = −x log2 x − (1 − x) log2(1 − x) and relations in Eq. S2
, Eq. S4 and Eq. S5 can be rewritten in terms of relative entropy of coherence by

CA
RE(ρ) + CB

RE(ρ) ≥ h

(
1 +

√
2c − 1
2

)
− 2SVN(ρ) (S6)

CA
RE(ρ) + CB

RE(ρ) ≥ −[1 − SVN(ρ)] log2 c (S7)
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2 MORE EXPERIMENTAL RESULTS
2.1 Fidelities of prepared states

For each prepared state ρ(τ), we reconstructed the density matrix ρexp(τ) with Ns = 2000 samples
using QST, and the fidelity of the prepared states is calculated by F = Tr

√√
ρ(τ)ρexp(τ)

√
ρ(τ).

The results are shown in TABLE S1.

τ F
0 0.9999±0.0005

0.1 0.9998±0.0005
0.2 0.9998±0.0003
0.3 0.9992±0.0003
0.4 0.9967±0.0006
0.5 0.9997±0.0003
0.6 0.9995±0.0002
0.7 0.9993±0.0002
0.8 0.9993±0.0002
0.9 0.9996±0.0002
1 0.9941±0.0006

Table S1. Fidelities of the experimentally prepared states.

2.2 Comparison of purity with CS algorithm and QST
In this section, we give the comparison of purity obtained from CS algorithm and QST with the

same Ns samples. For each prepared state ρexp(τ), we calculate the purity using the same number
of samples Ns in two algorithms. The accuracy of estimated purity is reflected by the distances
(error) between experimental value and its ideal value. The average errors over 11 prepared states
are shown in Figure S1. We observe that the advantage of classical shadow algorithm still hold when
Ns ≤ 800 even for the single-qubit states.
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Figure S1. The results of the accuracy of purity obtained using the same number of samples Ns
with CS algorithm and QST, respectively
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