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1. AF-MATB Simulation Environment 

Additional information regarding the Air Force Multi-Attribute Task Battery (AF-MATB; Miller, 

2010) implementation and the task training process are presented here as supplementary materials. 

This information is useful for a more comprehensive understanding of AF-MATB task parameters 

and operation, as well as the extensive, five-day training process that was used to mitigate against 

task learning effects and identify individual high task difficulty levels for each participant. 

AF-MATB, designed to be broadly representative of aircraft operation, is comprised of four 

unique subtasks that can be simultaneously operated in any combination. These four subtasks consist 

of compensatory manual tracking (Tracking), visual stimulus monitoring (System Monitoring), 

auditory stimulus monitoring (Communications), and dynamic resource allocation (Resource 

Management) tasks. For this study, all four subtasks were operated concurrently by the participants. 

In addition to the four subtasks, which appear on the interface as shown in Figure 1, the AF-MATB 

simulation interface contains two additional panels: the Pump Status panel and the Scheduling panel. 

The Pump Status panel contains the instantaneous flow rates (in arbitrary units) for the eight 

individual pumps in the Resource Management subtask and can be used by the participants to easily 

identify current pump states (described in more detail in section 1.1.4). The Scheduling panel can be 

used to convey information about future simulation state of the Tracking and Communications 

subtasks to participants but was disabled for this study (and appeared to participants as shown in 

Figure 1). 
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Figure 1 User interface for the AF-MATB task environment. The four subtasks (System 

Monitoring, Tracking, Communications, and Resource Management) are shown in the left and 

center columns on the interface. The right column shows Scheduling and Pump Status 

information windows. The Scheduling information window was disabled for this study. More 

information on the AF-MATB task can be found in AF-MATB User’s Guide (Miller, 2010). 

The AF-MATB simulation environment is highly customizable and flexible, and the number of 

modes and adjustable parameters available to a researcher or practitioner are beyond the scope of the 

work presented here. Interested readers may consult the AF-MATB User’s Guide (Miller, 2010) or 

contact the corresponding author of this manuscript for the most up to date version of both the task 

software and documentation (which are freely available for distribution and use).  The task 

parameters and settings used for this study were chosen in order to replicate the original MATB task 

functionality (Comstock and Arnegard, 1992). 

1.1.1. Tracking 

The tracking subtask requires participants to compensate for random movement of the reticle (in 

green) in order to keep it centered on the target crosshairs (in yellow). Random movement of the 

reticle is governed by drift velocity and perturbed at irregular time intervals by changes in direction; 

these two parameters (drift velocity and frequency of directional changes) are used to influence 

compensatory tracking difficulty. The reticle is controlled by the participants with a joystick. 

Difficulty of the tracking subtask is increased over three levels (low, medium, and high) by which the 

drift velocity and frequency of directional perturbations are increased. Performance on the Tracking 

subtask is commonly expressed as a measure of distance from reticle to the target, such as root-mean-

squared (RMS) error, for the duration of the simulation. 



Estepp et al.                                                            Electrode Replacement and Classification Accuracy Supplement 

Justin R. Estepp 3 

1.1.2. System Monitoring 

The System Monitoring subtask is divided into two separate visual stimulus types, lights and gauges. 

Both are identical in their operation; when any of the System Monitoring indicators show a warning 

state, the participant must respond via key press to reset the indicator. A warning state for the lights is 

either the green light (on the left, currently shown as ‘on’ in Figure 1) turning off or the red light (on 

the right, currently shown as ‘off’ in Figure 1) turning on. The gauges, which slowly oscillate about 

the center tick mark, enter a warning state when they drift outside one tick mark above or below 

center. All indicators in Figure 1 show their default state. The participant responds to a warning 

indicator by pressing its corresponding function key (F1 through F6, as shown in Figure 1) on the 

task keyboard; correct warning indicator acknowledgments are scored as a ‘hit’. Any warning 

indicator not acknowledged by the participant within a predetermined time window will reset to its 

default state and be scored as a ‘miss’. If a key press for any indicator is recorded while that indicator 

is in its default state, that acknowledgement is scored as a ‘false alarm’. Difficulty of the System 

Monitoring subtask is increased by increasing the frequency of warning indicators. Performance on 

the System Monitoring subtask is commonly expressed as the percentage of warning indicators 

scored as ‘hits’. 

1.1.3. Communications 

The Communications subtask requires the participant to monitor short voice communications (voice 

comms) played over a set of desktop speakers that contain three pieces of information: a callsign, a 

communications channel, and a frequency. The participant is assigned a callsign (NGT504) and is 

instructed to listen for voice comms designated for his or her callsign; these are labeled as ‘target’ 

voice comm events. Some voice comms are designated for distractor callsigns, labeled as distractor 

events, and should be ignored by the participant. If identified as the participant’s callsign, the 

participant must follow instructions to change one of four communication channels (NAV1, NAV2, 

COM1, or COM2) to a specified frequency. This is accomplished via the arrow keys (up and down to 

change the channel, left and right to change the frequency) on the task keyboard. All 

channel/frequency modifications must be confirmed by pressing the ‘Enter’ button on the task 

keyboard. ‘Hits’ in the Communications subtask must be correct in callsign, communications 

channel, and frequency, and confirmed by pressing the ‘Enter’ button. If any of these are incorrect, or 

if the voice comm is not acknowledged by the participant within a predefined time window, the voice 

comm event will be counted as a ‘miss’. Voice comm confirmations (pressing the ‘Enter’ key) that 

are designated for a distractor callsign or fall outside of a predefined response window, even if 

correct, were counted as a ‘false alarm’. Difficulty of the Communications subtask is increased by 

increasing both the frequency of target voice comms and the ratio of target to distractor voice comm 

events. Performance on the Communications subtask is commonly expressed as the percentage of 

voice comms scored as ‘hits’. 

1.1.4. Resource Management 

The Resource Management subtask focuses on two simulated fuel tanks (designated as Tank A and 

Tank B in Figure 1). Each tank begins at a nominal fuel level (indicated by the red tick mark on each 

tank, a volume of 2500 arbitrary fuel units), but the fuel tanks deplete at constant rates during the 

simulation. The participant is required to keep each tank as close to its nominal fuel level as possible 

by resupplying from four reserve tanks (designated as Tank C, Tank D, and two unlabeled tanks in 

Figure 1). The two unlabeled tanks hold an infinite amount of reserve fuel, but Tanks C and D are 

limited to a maximum capacity of 2000 fuel units. A series of fuel pumps, labeled 1 through 8, are 

used to control fuel flow between the tanks, and the direction of flow is indicated by an arrow next to 
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each pump. Instantaneous flow rates of all pumps are displayed in the Pump Status panel. A flow rate 

of ‘0’ indicates that the pump is currently in the closed position (Pump 1 in Figure 1, shown with a 

graphical indicator of the pump being black), and any flow rate greater than 0 indicates that the pump 

is currently in the open position (Pump 2 in Figure 1, shown with a graphical indicator of the pump 

being green). Fuel pumps are cycled through the open and closed positions by pressing the 

corresponding pump number on the number key row. 

There are two types of fuel pump events that can occur during a simulation: pump shut-offs and 

pump failures. A pump shut-off occurs when a pump switches from open to closed without any input 

from the participant. Any fuel pump that experiences a shut-off can be immediately opened again by 

the participant if he/she chooses to perform that action. Further, any pump that experiences a shut-off 

event while in the closed position stays closed (a pump shut-off cannot change a pump status from 

closed to open). A pump failure, however, completely disables a pump for a predetermined period of 

time regardless of previous pump status (open or closed). Pump failures are graphically indicated by 

turning the pump red and setting the flow rate to 0 in the Pump Status panel. Pump failures will 

resolve themselves after a period of time after which they will return to their normal functionality, 

beginning in the closed position. Difficulty of the Resource Management subtask is increased by 

increasing the frequency of both pump shut-offs and failures. Performance on the Resource 

Management subtask is commonly expressed as an average measure of deviation from the nominal 

fuel level in Tank A and Tank B, such as average RMS error for the two tanks. 

1.2. AF-MATB Training and Titration: Days 1 through 5 

To mitigate against task learning effects, participants were trained on AF-MATB for a minimum of 5 

training sessions lasting 2 hours each (for a total of 10 hours of training). Training was guided by 

establishing 20 unique levels of task difficulty whereby the event frequencies for each subtask were 

increased (or, for Communications subtask distractors, increased and then decreased) step-wise 

between each level. These 20 levels and their assigned subtask event frequencies are shown in Table 

1. Frequencies are expressed as the number of events in each subtask per 15 minutes of simulation 

time. The relationship between event frequency and task difficulty level is approximately linear, 

although minor variations between levels do exist. The level of Tracking difficulty for each level 

(low, medium, or high) is also indicated in Table 1. 

Table 1 AF-MATB task difficulty levels and their associated subtask event counts in a 15-

minute trial. 

Level Tracking Communications System Monitoring 

Resource 

Management 

Target Distractor Lights Gauges Failures Shut-Offs 

1 Low 9 3 72 63 6 3 

2 Low 12 6 84 78 9 6 

3 Low 15 9 96 93 12 6 

4 Low 18 12 108 108 15 9 

5 Medium 21 15 120 123 21 12 

6 Medium 24 12 132 138 27 12 

7 Medium 27 15 144 153 30 15 

8 Medium 30 15 156 168 36 18 

9 Medium 33 18 168 183 42 21 

10 Medium 36 18 180 198 45 21 
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11 Medium 39 18 192 213 51 24 

12 Medium 42 21 204 228 57 27 

13 High 45 18 216 243 60 30 

14 High 48 18 228 258 66 30 

15 High 51 15 240 273 72 33 

16 High 54 15 252 288 75 33 

17 High 57 12 264 303 81 36 

18 High 60 9 276 318 87 39 

19 High 63 6 288 333 90 42 

20 High 66 3 300 348 93 45 

 

Task training was administered by a subject matter expert (SME) with extensive experience and 

familiarity with AF-MATB. On Day 1 of the five-day training protocol, participants were introduced 

to AF-MATB subtask concepts via written instruction provided by the SME. Participants were then 

given practice trials on each individual subtask during which they were required to demonstrate 

proficiency in understanding of the subtask functionality. During Days 2 and 3 the participants began 

performing all subtasks simultaneously, beginning at Level 2 and progressing upward at the 

discretion of the SME. Training scenarios lasted 5 minutes each, and a two hour session totaled 

between 10 and 15 trials with some replication of levels. The goal for the end of Day 3 was to 

identify a maximum task difficulty level at which the participant was able to achieve asymptotic task 

performance. As participants were instructed not to prioritize any one subtask over another, but to 

treat all subtasks as equally important, there was some variability in relative subtask performance 

between participants. Prior work in psychophysiological assessment of cognitive workload 

demonstrating the importance of individual differences in task ability suggests that asymptotic 

performance will vary between individuals (Wilson and Russell, 2007). As a result the selection of an 

individual participant’s maximum/asymptotic task difficulty level, called their titration level, was 

estimated based on training performance through Day 3. Concurrence on estimated titration level was 

required between a minimum of two SMEs. To check the validity of the estimated titration level, 

each participant completed three, 5-minute trials each spanning two levels below and two levels 

above their estimated titration level on Day 4. Performance on these 15 trials completed on Day 4 

was used to determine the participant’s final titration level, which also required concurrence between 

a minimum of two SMEs. Finally, on Day 5, participants completed a minimum of two AF-MATB 

trials at their titration level, only these trials were extended to 15 minutes in length. 

2. Full Saliency Rank and Ordinal Rank Feature Tables 

 

‘Top 5’ feature tables for both saliency and ordinal rank features were presented in the manuscript. 

The full tables, including all 37 features, for both saliency rank (Table 2) and ordinal rank (Table 3) 

are presented here. 

Table 2 Mean saliency rank of features. 

Feature Mean Saliency Rank 

Blink Rate 0.066357 

O2 Gamma 0.043579 

VEOG Gamma 0.034536 

IBI 0.033598 

T5 Gamma 0.033462 
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T5 Beta 0.032797 

O2 Beta 0.030498 

HEOG Delta 0.029689 

Pz Gamma 0.028665 

VEOG Alpha 0.028326 

HEOG Gamma 0.028051 

Fz Gamma 0.027443 

F7 Gamma 0.026488 

F7 Delta 0.02626 

Fz Alpha 0.026125 

T5 Delta 0.025753 

Pz Beta 0.025736 

Fz Beta 0.025727 

HEOG Beta 0.025122 

VEOG Theta 0.024915 

Fz Delta 0.024706 

O2 Theta 0.024603 

T5 Alpha 0.024569 

Pz Theta 0.023866 

VEOG Beta 0.023705 

F7 Theta 0.023226 

F7 Beta 0.023056 

Pz Alpha 0.022999 

F7 Alpha 0.022186 

HEOG Alpha 0.022141 

Fz Theta 0.021846 

Pz Delta 0.02159 

O2 Delta 0.020801 

T5 Theta 0.020236 

HEOG Theta 0.019183 

O2 Alpha 0.019143 

VEOG Delta 0.019017 

 

Table 3 Mean ordinal rank of features. 

Feature Mean Saliency Rank 

IBI 11.65 

T5 Alpha 17.32 

O2 Beta 17.95 

Fz Theta 18.18 

Pz Beta 18.445 

O2 Delta 18.445 

O2 Alpha 18.56 

VEOG Gamma 18.59 

O2 Theta 18.61 

T5 Beta 18.615 

HEOG Theta 18.67 
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HEOG Alpha 18.67 

T5 Gamma 18.72 

Fz Gamma 18.74 

T5 Delta 18.765 

Pz Gamma 18.885 

HEOG Gamma 18.91 

VEOG Theta 19.025 

VEOG Delta 19.19 

Blink Rate 19.24 

HEOG Delta 19.255 

Pz Delta 19.295 

O2 Gamma 19.33 

HEOG Beta 19.335 

Pz Theta 19.355 

VEOG Beta 19.405 

F7 Beta 19.46 

F7 Theta 19.465 

VEOG Alpha 19.575 

T5 Theta 19.73 

Pz Alpha 19.925 

Fz Alpha 20.16 

Fz Beta 20.21 

F7 Delta 20.33 

F7 Gamma 20.715 

F7 Alpha 20.965 

Fz Delta 21.31 

3. Data from Participant With Low-Performing Workload State Classification 

 

As mentioned in the text, one participant consistently generated between-session classifier accuracies 

of approximately chance. The classifier accuracy distributions with this participant’s data replaced 

with sample mean (by factor) are shown in Figure 2. The same data, only expressed as d’, is shown in 

Figure 3. The time series data for this participant are shown below in Figure 4. 
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Figure 2 Boxplots showing between-session classifier accuracy data representative of the 2 

(electrode replacement, between) x 4 (learning approach, within) mixed model ANOVA. This is 

the same data as shown in Figure 14 of the associated manuscript, only the participant (in the 

electrodes replaced group) with workload start accuracies at or below chance has been 

replaced with the sample mean (by factor). Note that the skew is all but eliminated when this 

participant’s data is classified as an outlier and replaced with the sample mean (by factor). 
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Figure 3 Boxplots showing between-session classifier d’ data representative of the 2 (electrode 

replacement, between) x 4 (learning approach, within) mixed model ANOVA. This is the same 

data as shown in Figure 2 of this supplementary material, only expressed as d’ (instead of 

classifier accuracy). As with Figure 2, the participant (in the electrodes replaced group) with 

workload start accuracies at or below chance has been replaced with the sample mean (by 

factor). As with Figure 2, the skew is all but eliminated when this participant’s data is classified 

as an outlier and replaced with the sample mean (by factor). In addition, this figure, when 

compared to Figure 2, serves as an example of the improved normality and equality of variance 

for the data distributions when using d’ instead of classifier accuracy as a measure of learning 

algorithm performance. 
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Figure 4 Feature plots for IBI, Blink Rate, Fz, and Pz (shown as time-frequency plots) for a 

participant at chance classifier accuracy. Feature plots for this participant are shown 

respective of task difficulty (in rows) and session (in columns). All corresponding feature plots 

are shown on the same y-axis scale (e.g., all time-frequency plots for Fz and Pz are shown using 

the scale depicted on the included colorbar). Frequency band ranges are shown on the time-

frequency plots. In contrast to the participant presented in the manuscript, there are no clear 

features in the participant presented here that are clearly separable with respect to low versus 

high task difficulty. There are no visually noticeable effects of session, or as is the case for this 

participant, electrode replacement (this participant was from the Replaced group). 

4. Additional Learning Algorithm Performance Analysis 

As discussed in the manuscript, the post-hoc nature by which this dataset may be analyzed provides a 

number of alternative opportunities to explore and hypotheses to be investigated. In an effort to 

provide the reader with additional information, such as performance benchmarks on varied feature 

sets and a deeper insight into the performance of the passive brain-computer interface (pBCI) system, 

additional learning trials have been constructed and executed to create the data tables, below. Each 

table was constructed with a specific feature set that was post-hoc simulated given consideration for 

the availability of features from unique data sources. Further, the learning algorithm performance 

(median from each of the k-folds, as described in the manuscript) is provided for each individual 

participant, separated by the between-subjects factors (electrode replacement). 

4.1. All Features 

The first feature set reported is that which contains all features described in the manuscript (EEG 

band power, V/HEOG band power, Blink Rate, and Inter-Beat Interval). All analysis presented in the 

manuscript used learning trials from this feature set. Results for this feature set are shown in Table 4. 
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Table 4 Learning algorithm performance results for the between-session test set using feature 

sets containing all available (37) features. Both accuracy (expressed as proportion of epochs 

correct, or ‘%’) and sensitivity (expressed as d’) are shown for each individual participant 

(each participant is individually identified by their ‘pID’). Results in this table are the median 

values from the k-fold procedure performed for each participant and learning approach. 

Cross-session generalization is investigated by using either S1 or S2 as the learning set with S2 

or S1 (respectively) reserved as the between-session test set. 

 All Features (EEG Band Power, V/HEOG Band Power, Blink Rate, and Inter-Beat Interval) 

 

pID 

Train(S1) Train(S2) 

 ANN LDA LIN-SVM RBF-SVM ANN LDA LIN-SVM RBF-SVM 

 % d' % d' % d' % d' % d' % d' % d' % d' 

El
e

ct
ro

d
e

s 
R

em
ai

n
ed

 

05 .81 2.45 .86 2.13 .89 2.47 .78 1.75 .66 1.34 .67 1.14 .63 1.00 .67 1.21 

06 .68 2.43 .93 3.01 .88 2.98 .82 1.86 .88 2.50 .86 3.12 .87 2.24 .91 3.03 

08 .75 1.41 .80 1.67 .79 1.66 .78 1.58 .74 1.75 .72 1.74 .80 1.82 .75 1.75 

14 .81 2.19 .83 2.46 .77 2.20 .82 2.15 .87 2.27 .77 1.80 .80 1.78 .83 1.97 

16 .98 3.94 .97 3.80 .96 3.68 .87 3.45 .83 2.64 .87 2.87 .90 3.02 .66 2.40 

18 .83 1.95 .85 2.04 .84 1.99 .82 1.83 .80 1.81 .83 1.98 .81 1.85 .83 1.95 

23 .90 3.53 .89 3.38 .90 3.40 .90 3.05 .96 3.81 .96 3.56 .96 3.61 .92 3.90 

26 .95 3.41 .91 2.92 .86 2.74 .88 2.45 .96 3.65 .89 2.55 .90 3.01 .65 2.21 

28 .76 1.44 .82 1.88 .80 1.79 .66 .80 .84 2.12 .81 1.94 .84 1.99 .72 1.21 

31 .85 2.24 .89 2.56 .86 2.36 .79 1.99 .86 2.27 .82 2.47 .87 2.45 .81 1.82 

El
e

ct
ro

d
e

s 
R

e
p

la
ce

d
 

01 .97 3.98 .91 2.86 .96 3.49 .92 3.47 .94 3.58 .94 3.42 .93 3.33 .93 3.02 

02 .74 1.92 .64 1.14 .74 1.88 .68 1.89 .74 1.35 .73 1.28 .83 2.02 .77 1.63 

04 .93 3.16 .93 2.89 .92 2.83 .93 3.31 .81 2.45 .78 2.39 .78 2.42 .87 2.55 

11 .65 .95 .79 1.81 .70 1.27 .66 1.00 .69 1.02 .84 2.37 .89 2.46 .60 .53 

15 .87 3.03 .88 3.74 .84 2.42 .90 3.55 .84 2.77 .86 2.95 .77 2.41 .82 2.66 

21 .99 4.96 .99 5.14 .98 4.67 .96 4.34 .99 4.48 .99 5.17 .98 4.17 .99 5.12 

24 .46 -.18 .42 -.43 .47 -.17 .45 -.26 .47 -.16 .45 -.25 .45 -.25 .41 -.44 

27 .61 .60 .70 1.08 .71 1.23 .59 .68 .63 .97 .73 1.43 .71 1.38 .56 .91 

29 .77 1.83 .86 2.24 .88 2.40 .62 1.34 .82 1.96 .82 1.85 .82 1.83 .72 1.42 

30 .86 2.88 .91 3.01 .86 2.87 .84 2.22 .92 3.10 .92 3.13 .93 3.05 .93 3.01 

 

4.2. EEG Features 

To examine the effectiveness of EEG-based features as compared to those derived from peripheral 

sources (ECG and V/HEOG), learning algorithm performance was evaluated using only the 25 EEG 

band power features. Results for this feature set are shown in Table 5. 

Table 5 Learning algorithm performance results for the between-session test set using feature 

sets containing only the 25 EEG band power features. Data in this table was created from 

processes identical to and is formatted in the same structure as Table 4. 

 EEG Features (EEG Band Power) 

 

pID 

Train(S1) Train(S2) 

 ANN LDA LIN-SVM RBF-SVM ANN LDA LIN-SVM RBF-SVM 

 % d' % d' % d' % d' % d' % d' % d' % d' 

E l e c t r o d e s  R e m a i n e d
 

05 .59 .49 .81 1.80 .80 1.79 .62 1.71 .84 3.50 .64 1.36 .62 1.12 .75 1.63 
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06 .97 3.93 .90 3.25 .96 3.56 .96 3.58 .98 4.84 .85 3.57 .88 2.84 .92 3.10 

08 .75 1.36 .75 1.36 .75 1.35 .74 1.32 .90 3.23 .75 1.65 .76 1.60 .71 1.35 

14 .74 1.36 .77 1.69 .73 1.51 .65 1.26 .92 3.80 .73 1.52 .76 1.53 .67 .92 

16 .88 2.54 .91 2.72 .75 1.57 .81 2.45 .82 3.42 .83 2.45 .70 1.94 .67 2.00 

18 .83 1.90 .81 2.04 .80 1.94 .83 1.99 .95 3.53 .83 1.93 .82 1.88 .82 1.83 

23 .90 2.65 .92 2.93 .90 2.79 .88 2.35 1.00 5.77 .94 3.28 .95 3.27 .92 3.17 

26 .67 1.47 .67 1.61 .66 1.64 .72 1.28 .86 2.86 .64 .91 .61 .88 .76 1.46 

28 .72 1.20 .80 1.70 .80 1.67 .70 1.16 1.00 5.64 .82 1.99 .84 2.02 .71 1.12 

31 .71 1.62 .71 1.17 .76 1.46 .72 1.33 .52 .60 .79 2.04 .79 2.00 .79 2.11 

El
e

ct
ro

d
es

 R
ep

la
ce

d
 

01 .90 2.61 .85 2.28 .85 2.28 .79 2.01 .93 3.20 .94 3.31 .95 3.36 .88 2.49 

02 .58 .98 .56 .79 .55 .79 .56 1.17 .85 2.55 .64 .72 .74 1.31 .63 .73 

04 .84 2.04 .86 2.22 .86 2.17 .84 2.11 .98 4.68 .75 2.41 .78 2.08 .80 1.74 

11 .79 1.79 .80 1.87 .76 1.62 .76 1.54 .58 .98 .81 1.93 .85 2.10 .49 -.05 

15 .76 2.02 .82 3.41 .76 2.59 .76 2.59 .91 3.32 .80 2.61 .71 1.90 .88 2.36 

21 .98 4.73 .99 4.88 .98 4.77 .94 4.17 1.00 6.00 .99 5.02 .97 4.66 .92 4.08 

24 .49 -.07 .42 -.41 .44 -.32 .47 -.24 .83 2.07 .45 -.25 .44 -.32 .39 -.71 

27 .59 .46 .70 1.08 .70 1.11 .59 .50 .88 2.40 .69 .98 .67 .88 .57 .35 

29 .80 1.74 .82 1.86 .85 2.08 .77 1.52 .98 4.79 .72 1.25 .75 1.34 .75 1.39 

30 .84 2.01 .88 2.33 .84 2.03 .73 1.23 .82 3.23 .76 2.00 .76 1.96 .82 2.00 

4.3. Peripheral Features 

To examine the effectiveness of peripheral features (ECG and V/HEOG) as compared to those 

derived from EEG sources, learning algorithm performance was evaluated using only the 10 band 

power features from VEOG and HEOG as well as Blink Rate and Inter-Beat Interval. Results for this 

feature set are shown in Table 6. 

Table 6 Learning algorithm performance results for the between-session test set using feature 

sets containing only the peripheral features (V/HEOG band power, Inter-Beat Interval, and 

Blink Rate). Data in this table was created from processes identical to and is formatted in the 

same structure as Table 4. 

 Peripheral Features (V/HEOG Band Power, Blink Rate, and Inter-Beat Interval) 

 

pID 

Train(S1) Train(S2) 

 ANN LDA LIN-SVM RBF-SVM ANN LDA LIN-SVM RBF-SVM 

 % d' % d' % d' % d' % d' % d' % d' % d' 

El
ec

tr
o

d
es

 R
em

ai
n

ed
 

05 .58 .59 .80 1.79 .76 1.69 .50 .02 .57 .43 .94 3.18 .64 1.07 .50 .07 

06 .50 .16 .54 1.22 .50 .00 .51 .74 .68 1.14 .83 1.94 .77 1.62 .41 -.61 

08 .56 .36 .73 1.30 .74 1.36 .53 .19 .72 1.20 .84 1.99 .72 1.30 .74 1.32 

14 .76 1.75 .83 1.91 .82 1.96 .80 1.98 .78 1.59 .89 2.47 .81 1.77 .73 1.59 

16 .93 2.97 .98 4.30 .97 4.06 .88 2.38 .94 3.19 .98 4.18 .96 3.48 .91 2.70 

18 .60 .52 .64 .72 .64 .69 .62 .60 .56 .35 .68 .95 .65 .94 .54 .32 

23 .75 2.41 .72 2.30 .72 2.18 .72 1.58 .74 2.14 .87 2.30 .75 2.18 .72 2.00 

26 .96 3.52 .95 3.65 .97 3.77 .95 3.35 .98 4.27 .98 4.00 .98 4.44 .97 3.81 

28 .63 .72 .75 1.38 .70 1.11 .60 .52 .74 1.27 .87 2.23 .74 1.31 .66 .86 

31 .79 1.62 .90 2.79 .92 3.10 .80 1.77 .83 2.08 .97 3.72 .87 2.40 .83 1.98 

El
e

ct
r

o
d es
 

R
e

p
la

ce
d

 01 .95 3.74 .97 4.69 .94 4.20 .91 3.44 .87 2.87 .98 4.33 .86 2.95 .88 2.66 

02 .67 .98 .68 1.06 .66 .96 .62 .69 .74 1.28 .86 2.13 .77 1.47 .73 1.23 
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04 .91 2.72 .93 3.02 .96 4.02 .91 2.76 .84 2.54 .97 4.05 .89 2.85 .85 2.61 

11 .55 .40 .56 .42 .60 .67 .56 .37 .52 .12 .80 1.71 .58 .41 .55 .34 

15 .83 1.94 .87 2.30 .89 2.41 .81 1.80 .85 2.25 .93 2.91 .92 2.93 .83 1.98 

21 .72 1.17 .76 1.42 .75 1.33 .71 1.14 .84 2.03 .82 1.87 .82 1.86 .79 1.69 

24 .50 -.01 .48 -.08 .49 -.07 .48 -.14 .50 .01 .76 1.43 .54 .22 .51 .07 

27 .58 .43 .59 .46 .61 .61 .63 .68 .54 .38 .72 1.18 .58 .95 .53 .44 

29 .65 1.29 .88 2.35 .80 2.54 .53 .73 .73 1.32 .93 3.01 .78 1.81 .64 1.04 

30 .83 2.09 .87 2.79 .86 2.91 .83 2.00 .85 2.31 .93 3.01 .85 2.20 .86 2.51 

4.4. EEG and Blink Rate Features 

Since it is possible to derive a blink rate feature using EEG sources only, without the use of VEOG 

(e.g. Joyce, Gorodnitsky, and Kutas, 2004), the addition of Blink Rate to the EEG band power feature 

set was evaluated. Results for this feature set are shown in Table 7. 

Table 7 Learning algorithm performance results for the between-session test set using feature 

sets containing EEG Band Power and Blink Rate features. Data in this table was created from 

processes identical to and is formatted in the same structure as Table 4. 

 EEG Features (EEG Band Power) and Blink Rate 

 

pID 

Train(S1) Train(S2) 

 ANN LDA LIN-SVM RBF-SVM ANN LDA LIN-SVM RBF-SVM 

 % d' % d' % d' % d' % d' % d' % d' % d' 

El
e

ct
ro

d
e

s 
R

em
ai

n
e

d
 

05 .65 .85 .86 2.17 .85 2.18 .61 1.87 .67 1.25 .66 1.27 .63 1.23 .79 1.64 

06 .92 2.88 .90 3.21 .91 2.85 .88 2.72 .86 2.39 .86 3.37 .83 1.94 .83 2.02 

08 .80 1.70 .79 1.63 .78 1.60 .78 1.58 .83 2.05 .82 2.34 .85 2.20 .80 1.88 

14 .77 1.62 .80 1.93 .75 1.69 .80 1.79 .79 1.66 .75 1.60 .78 1.65 .60 .86 

16 .95 3.51 .92 2.93 .88 2.41 .77 1.46 .71 2.05 .85 3.15 .74 2.21 .68 2.26 

18 .83 1.92 .83 2.04 .82 1.91 .84 1.96 .81 1.83 .83 1.92 .82 1.90 .81 1.82 

23 .90 3.37 .89 3.50 .89 3.25 .85 2.11 .96 3.70 .97 3.63 .96 3.63 .92 3.32 

26 .83 2.47 .73 2.06 .81 2.45 .84 2.11 .86 2.50 .81 2.04 .81 2.49 .84 2.47 

28 .76 1.50 .82 1.92 .80 1.73 .67 1.10 .83 1.95 .84 2.13 .86 2.16 .71 1.16 

31 .76 1.97 .87 2.24 .85 2.11 .74 1.66 .86 2.23 .83 2.35 .85 2.31 .82 2.01 

El
ec

tr
o

d
es

 R
ep

la
ce

d
 

01 .97 3.76 .91 2.88 .97 4.14 .85 2.93 .96 3.69 .94 3.35 .96 3.63 .97 3.80 

02 .63 1.31 .58 .94 .64 1.28 .60 1.43 .65 .82 .72 1.17 .74 1.34 .67 .95 

04 .92 2.93 .92 2.82 .90 2.60 .92 2.96 .91 2.93 .87 2.69 .91 2.98 .86 2.15 

11 .81 1.84 .86 2.27 .79 1.69 .77 1.50 .73 1.23 .84 2.17 .87 2.30 .48 -.08 

15 .85 2.52 .86 3.11 .83 2.34 .80 1.81 .83 2.49 .85 2.87 .78 2.27 .90 2.68 

21 .99 4.88 .99 5.02 .98 4.84 .92 3.96 .98 4.38 .99 5.07 .97 4.66 .92 4.06 

24 .47 -.17 .41 -.44 .44 -.34 .46 -.44 .41 -.44 .40 -.50 .41 -.47 .42 -.47 

27 .50 -.01 .62 .60 .63 .66 .53 .20 .64 .73 .69 .98 .67 .87 .59 .44 

29 .86 2.13 .87 2.25 .88 2.38 .84 2.03 .76 1.42 .74 1.36 .74 1.31 .76 1.44 

30 .88 2.44 .92 2.85 .90 2.66 .81 1.79 .91 3.75 .84 3.33 .88 3.14 .90 2.83 

4.5. V/HEOG Features 

Those features derived only from V/HEOG sources (V/HEOG Band Power and Blink rate) were 

evaluated for between-session learning algorithm performance. Results for this feature set are shown 
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in Table 8. 

Table 8 Learning algorithm performance results for the between-session test set using feature 

sets containing only the features derived from V/HEOG sources (V/HEOG band power and 

Blink Rate). Data in this table was created from processes identical to and is formatted in the 

same structure as Table 4. 

 V/HEOG Features (V/HEOG Band Power and Blink Rate) 

 

pID 

Train(S1) Train(S2) 

 ANN LDA LIN-SVM RBF-SVM ANN LDA LIN-SVM RBF-SVM 

 % d' % d' % d' % d' % d' % d' % d' % d' 

El
e

ct
ro

d
es

 R
em

ai
n

ed
 

05 .65 .80 .80 1.65 .79 1.62 .57 .39 .62 .70 .67 .96 .67 1.11 .64 .91 

06 .64 .86 .65 1.14 .66 1.13 .64 .84 .70 1.09 .73 1.21 .71 1.13 .58 .45 

08 .70 1.13 .71 1.30 .73 1.33 .71 1.17 .74 1.31 .75 1.37 .76 1.44 .75 1.36 

14 .81 1.80 .80 1.72 .81 1.78 .78 1.60 .75 1.40 .77 1.64 .76 1.58 .77 1.47 

16 .93 2.94 .97 3.85 .92 2.91 .92 2.84 .92 2.88 .93 2.89 .94 3.05 .90 2.60 

18 .57 .39 .64 .73 .64 .70 .61 .57 .60 .54 .74 1.46 .75 1.35 .55 .27 

23 .71 2.45 .71 2.66 .72 2.90 .68 1.22 .72 1.98 .76 2.31 .75 2.19 .72 2.19 

26 .88 2.66 .91 2.87 .91 3.08 .90 2.71 .92 3.10 .91 3.05 .93 3.34 .91 3.06 

28 .65 .87 .73 1.36 .72 1.27 .62 .73 .68 .96 .73 1.26 .73 1.24 .65 .78 

31 .85 2.11 .90 2.79 .93 3.18 .83 1.90 .83 1.96 .86 2.30 .87 2.27 .80 1.82 

El
e

ct
ro

d
e

s 
R

e
p

la
ce

d
 

01 .95 3.60 .98 4.23 .97 4.56 .96 3.43 .94 3.17 .93 3.25 .93 3.14 .91 2.72 

02 .63 .87 .67 1.02 .66 .94 .59 .60 .77 1.50 .78 1.58 .77 1.52 .72 1.26 

04 .93 3.04 .95 3.43 .96 4.31 .94 3.27 .91 2.97 .83 2.45 .91 3.07 .90 2.88 

11 .50 .01 .56 .36 .60 .60 .50 .00 .54 .29 .55 .36 .57 .49 .53 .26 

15 .82 1.92 .88 2.31 .89 2.48 .82 1.85 .85 2.36 .91 2.98 .91 2.94 .81 2.06 

21 .74 1.28 .77 1.48 .75 1.38 .72 1.19 .80 1.74 .86 2.14 .82 1.84 .71 1.33 

24 .54 .19 .49 -.05 .49 -.03 .50 .00 .50 -.01 .49 -.08 .53 .16 .50 .01 

27 .62 .67 .60 .51 .61 .60 .61 .63 .60 .54 .66 1.09 .63 .93 .59 .52 

29 .86 2.27 .86 2.45 .88 2.58 .83 1.96 .79 1.65 .82 1.88 .82 1.93 .77 1.53 

30 .83 2.13 .87 2.83 .87 2.93 .81 1.95 .86 2.38 .84 2.18 .85 2.18 .87 2.68 

4.6. Features with Optical Measurement Methods (Inter-Beat Interval and Blink Rate) 

Two of the peripheral features, Inter-Beat Interval and Blink Rate, are feasible to measure via remote, 

optical methods using imaging approaches. For example, Zhu and Ji (2007) describe a remote, 

imaging-based eye tracking system, and Estepp, Blackford, and Meier (2014) describe an imaging-

based pulse rate measurement system. Given the uniqueness of being able to measure these features 

without physical contact with the participant, they were evaluated in tandem. Results for this feature 

set are shown in Table 9. 

Table 9 Learning algorithm performance results for the between-session test set using feature 

sets containing only two peripheral features (Inter-Beat Interval and Blink Rate). Data in this 

table was created from processes identical to and is formatted in the same structure as Table 4. 

 Features with Optical Measurement Methods (Inter-Beat Interval and Blink Rate) 

 

pID 

Train(S1) Train(S2) 

 ANN LDA LIN-SVM RBF-SVM ANN LDA LIN-SVM RBF-SVM 

 % d' % d' % d' % d' % d' % d' % d' % d' 
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El
ec

tr
o

d
es

 R
em

ai
n

ed
 

05 .45 .01 .60 1.43 .55 1.08 .59 1.57 .51 .20 .56 .50 .53 .32 .50 .16 

06 .50 .00 .49 -.80 .50 .00 .50 -.21 .51 .42 .56 1.44 .50 .31 .29 -2.8 

08 .70 1.35 .76 1.41 .74 1.37 .63 .97 .74 1.70 .79 1.96 .69 1.99 .74 1.30 

14 .67 1.94 .76 2.07 .71 2.08 .67 2.09 .74 1.80 .71 1.16 .71 1.73 .65 1.71 

16 .91 2.71 .92 2.78 .90 2.64 .76 1.47 .89 2.69 .89 2.78 .92 2.85 .82 1.83 

18 .49 -.05 .53 .14 .52 .10 .47 -.13 .48 -.15 .52 .19 .50 -.06 .48 -.20 

23 .63 2.38 .68 2.21 .74 1.56 .63 .88 .62 1.45 .62 1.59 .62 1.74 .69 1.62 

26 .92 3.16 .93 3.89 .93 3.73 .73 1.55 .97 3.88 .97 3.95 .97 3.95 .91 3.13 

28 .59 .73 .63 .85 .60 .74 .61 .58 .73 1.23 .64 .71 .66 .81 .67 .96 

31 .87 2.49 .90 2.58 .90 2.58 .74 1.42 .69 1.48 .77 1.79 .75 1.72 .65 1.20 

El
e

ct
ro

d
es

 R
ep

la
ce

d
 

01 .88 3.30 .91 3.30 .83 3.47 .72 1.82 .72 2.16 .84 2.60 .72 2.12 .75 2.40 

02 .76 1.70 .82 1.93 .78 1.85 .69 .98 .65 .78 .64 .72 .63 .79 .67 .90 

04 .94 3.46 .94 3.28 .93 3.75 .93 3.39 .94 3.19 .98 4.12 .93 3.07 .92 2.90 

11 .52 .36 .53 .23 .52 .19 .51 .05 .51 .26 .52 .31 .51 .21 .49 -.12 

15 .82 1.84 .84 2.01 .83 1.94 .81 1.79 .83 2.08 .84 2.10 .83 2.01 .83 1.92 

21 .70 1.02 .69 1.03 .70 1.06 .68 1.03 .89 2.65 .88 2.40 .88 2.32 .75 1.33 

24 .55 .31 .43 -.34 .42 -.54 .49 -.05 .53 .18 .56 .35 .53 .19 .48 -.09 

27 .50 .01 .49 -.04 .50 -.02 .51 .03 .48 -.17 .49 -.14 .49 -.17 .47 -.27 

29 .51 .50 .75 1.47 .56 .93 .50 .05 .51 .11 .64 .87 .65 .77 .69 1.00 

30 .82 2.16 .81 1.98 .82 2.35 .83 1.90 .91 2.85 .95 3.43 .75 2.26 .88 2.63 

4.7. Wearable Sensor Technology and Inter-Beat Interval 

As a feature that is readily obtainable from wearable sensor technology (e.g. Pantelopoulos and 

Bourbakis, 2010), Inter-Beat Interval as a single-feature approach was evaluated. Results for this 

feature set are shown in Table 10. 

Table 10 Learning algorithm performance results for the between-session test set using feature 

sets containing only Inter-Beat Interval. Data in this table was created from processes identical 

to and is formatted in the same structure as Table 4. 

 Single Feature (Inter-Beat Interval) 

 

pID 

Train(S1) Train(S2) 

 ANN LDA LIN-SVM RBF-SVM ANN LDA LIN-SVM RBF-SVM 

 % d' % d' % d' % d' % d' % d' % d' % d' 

El
ec

tr
o

d
es

 R
em

ai
n

ed
 

05 .52 .72 .50 .21 .51 .33 .52 .96 .51 .68 .51 1.00 .51 1.09 .51 .64 

06 .50 .00 .50 .21 .50 .00 .50 .00 .53 .91 .52 .80 .52 .76 .46 -.07 

08 .50 .00 .49 -.26 .48 -.28 .56 .33 .50 .00 .50 .05 .50 .10 .50 .12 

14 .59 1.43 .61 1.56 .61 1.57 .61 1.48 .60 1.34 .57 1.28 .59 1.32 .59 1.57 

16 .61 .72 .59 .72 .60 .76 .60 .67 .57 1.44 .64 1.83 .64 1.83 .57 1.79 

18 .49 -.34 .49 -.60 .41 -.74 .41 -.63 .44 -.51 .45 -.55 .44 -.56 .44 -.45 

23 .52 .13 .53 .18 .53 .16 .54 .20 .59 .86 .65 .88 .65 .90 .51 .07 

26 .88 2.78 .87 2.84 .88 2.78 .66 .88 .87 2.27 .87 2.26 .85 2.17 .83 1.96 

28 .54 .34 .53 .20 .53 .23 .54 .32 .65 1.37 .65 1.73 .55 1.24 .64 .72 

31 .50 .00 .49 -.47 .49 -.14 .48 -.08 .49 -.31 .49 -.29 .49 -.27 .50 .02 

El
ec

tr
o

d
es

 
R

e
p

la
ce

d
 01 .60 2.16 .59 2.15 .59 2.15 .60 2.07 .55 1.27 .55 1.24 .55 1.31 .54 1.30 

02 .56 .58 .59 .53 .58 .52 .56 .56 .52 .20 .53 .22 .52 .17 .52 .16 

04 .80 1.78 .73 1.32 .76 1.45 .76 1.44 .59 .63 .59 .62 .59 .60 .60 .64 
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11 .50 .00 .50 -.44 .48 -.46 .58 .44 .51 .24 .51 .26 .51 .26 .52 .20 

15 .59 .85 .62 .71 .62 .73 .51 .06 .55 .27 .48 -.10 .50 -.03 .53 .16 

21 .62 .64 .62 .59 .62 .62 .60 .54 .72 1.31 .73 1.31 .74 1.31 .67 .94 

24 .56 .47 .58 .46 .57 .50 .45 -.26 .47 -.23 .48 -.09 .49 -.07 .46 -.31 

27 .50 .00 .49 -.29 .50 .00 .41 -.77 .48 -.23 .48 -.33 .48 -.28 .48 -.17 

29 .48 -1.2 .48 -1.2 .48 -1.2 .48 -1.1 .48 -.63 .49 -.32 .48 -.60 .48 -1.0 

30 .60 .58 .60 .58 .60 .60 .59 .55 .58 .78 .61 .80 .60 .82 .56 .42 
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