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I. APPENDIX 1: BRAIDING ON THE SPHERE -
DETAILS

In this section (following the introduction of spherical
braids in section 9 of the main text), we explain in detail
how to calculate the topological entropy given a braid on
a sphere. The algorithm for calculating the topological
entropy for a general surface braid can be found in this
paper1. The general procedure is that we use a trian-
gulation to set up a coordinate system for closed curves,
calculate the action of braid generators on these coordi-
nates, and measure the exponential growth rate of curve
length, which constitutes the topological entropy. Here,
we focus on the specific case of spherical braids.

We have set up the tetrahedral graph to model the mo-
tion of 4 +1/2 topological defects on the sphere, as la-
beled in fig. 7 of the main text. As seen in section 4 of the
main text, the topological entropy is the log of the braid
dilation factor λ, which is the stretching rate of curves
along the leaves of the unstable foliation, or alternatively,
the compression rate of curves along the leaves of the
stable foliation. We encode the way curves wind around
each vertex of the tetrahedral graph by specifying a tri-
angulation. In this case, the triangulation is the tetra-
hedral graph we already have. Any closed curve around
the graph can be topologically described by the triangu-
lation. An intersection coordinate is a weight assigned
to each edge that counts the number of transverse inter-
sections of the curve with that edge. The intersection
coordinates can encode a set of closed curves, or equiva-
lently, they can record the flux of foliations through that
edge.

To illustrate how the intersection coordinates help us
encode the stretching of material curves, consider the
curves in fig.1. Here we use an initial curve that is de-

FIG. 1: An example closed curve is stretched out due to
the action of two braid generators: σ1 and σ5.

scribed by the set of edge weights E = (1, 1, 0, 0, 1, 1),
meaning the curve intersects once respectively with the
first, second, fifth, and sixth edges, as demonstrated
by the leftmost graph of fig.1. After the CCW ro-
tation of edge 1, the intersection coordinates become
E = (1, 1, 1, 1, 2, 2). After the CCW rotation of edge 5,

the intersection coordinates become E = (1, 1, 3, 3, 2, 2).
The total edge weights has grown from 4 to 8 and then
to 12. With each braid operation, the intersection coor-
dinates are updated to reflect the stretching and folding
of the curve. Fortunately, the general update rule for
intersection coordinates is simple to derive.

To derive a general update rule, we must know the
effect of each braid generator on the intersection coordi-
nates. Recall that we refer to the pair switches between
two points by the edge connecting them, and note that
there are 6 such edges. We use a ± exponent to denote
a counter clockwise (CCW +) or clockwise (CW −) ex-
change. So, the 12 generators are: σ±i for i ∈ [1, 6]. Be-
cause of the rotational and mirror symmetry of the tetra-
hedron, we can map each edge to the position of edge 1
through some 2π/3 rotation or mirror reflection. There-
fore, we only need to fully define the action of S = σ+

1 ,
the CCW rotation of edge 1. All other generators can be
related to this one by conjugating with a set of symme-
tries. The update rule for S is constructed by breaking
down the point interchange into a series of ”flip” opera-
tions on the triangulation, sometimes called Whitehead
moves, and using our edge updating formula at each step.
As shown in fig. 2, we denote the edge between the two

FIG. 2: A triangulation flip, or Whitehead move. The
intersection coordinate of the new edge, E′, is give by

eq. 1.

triangles as E; A,B,C,D are the edges of the quadrilateral
in cyclic order; and E’ is the new edge after the flip. The
coordinate of the new edge E’ is updated according to
the formula

E′ = max(A+ C,B +D)− E ≡ ∆(A,B,C,D;E). (1)

The braid generator σ1 can be realized with two edge
flips (edges 3 and 4), and a CCW motion of the points
adjacent to edge 1, as shown in fig. 3. Applying the
coordinate update formula to this series of Whitehead
move gives the overall update rule for S. First, we update
the coordinates of edge 3 and edge 4

E′3 = ∆(E1, E6, E2, E5;E3) (2)
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FIG. 3: The triangulation flips and point motions that
realize braid generator σ1. Updating the intersection co-
ordinates consists of two applications of eq. 1, and a per-

mutation of the coordinates.

E′4 = ∆(E1, E5, E2, E6;E4). (3)

Then notice that the new set of coordinates is a permu-
tation of the initial ones. So the set of new intersection
coordinates is given by

En = (E1, E2, E6, E5, E
′
3, E

′
4). (4)

Other braid generators can be connected to S by a se-
ries of rotational and mirror symmetries. The idea is that
every edge can get into the position of edge 1 through
some rotations and reflections. First we will have R to
denote a CCW rotation by 2π/3 about the center point,
R for a CW rotation by 2π/3, and a mirror inversion
about the vertical center line M . We will also use T for
a right handed (positive) rotation of 2π/3 about an axis
going through the top point and bottom face. The in-
verse is T . For i ∈ [1, 2, 3, 4, 5, 6], we give the action of
the symmetry by the permutation π(i). For the moment,
we are just thinking about how the symmetries act on
the lattice edges.

R : π = (5, 6, 1, 2, 3, 4) (5)

R : π = (3, 4, 5, 6, 1, 2) (6)

M : π = (1, 2, 5, 6, 3, 4) (7)

T : π = (6, 5, 2, 1, 3, 4) (8)

T : π = (4, 3, 5, 6, 2, 1) (9)

Notice that M will switch CCW and CW braid genera-

tors, and R3 = R
3

= M2 = T 3 = T
3

= 1.
Since we have fully defined the action of the generator

S = σ+
1 on the coordinates, all other generators can be

related to this one by conjugating with a set of symme-
tries:

σ+
1 = S (10)

σ+
2 = RTSTR (11)

σ+
3 = RSR (12)

σ+
4 = TST (13)

σ+
5 = RSR (14)

σ+
6 = TST (15)

The operators act via left action; in other words, right
most operator acts first. The negative generators are
given by substituting S by MSM .

To compute the topological entropy, we start with an
initial set of intersection coordinates that correspond to
a closed curve. For pA braids, the initial intersection co-
ordinates do not matter, since all non-trivial loop would
produce the same exponential stretching rate asymptot-
ically. In our algorithm, we use the sum of the intersec-
tion coordinates as an effective proxy for the length of
the curve. Given a braid β composed of N braid opera-
tions, we record the updated intersection coordinates at
each step to get a sequence of intersection coordinates.
At step k, we calculate the sum of intersection coordi-

nates, Wk =
∑

i[
~Ek]i. Then the topological entropy per

operation (TEPO) for the braid β, h̄, is given by

h̄ = lim
k→∞

1

N
log(

Wk

Wk−1
). (16)

To obtain the asymptotic maximum TEPO, we itera-
tively compute h̄k = 1

N log( Wk

Wk−1
), and such iteration

stops after | h̄k − h̄k−1 | drops below a small enough
tolerance.

A. Appendix 2: Extracting Braids from Experimental Data

This section follows from the discussion in section 10 of
the main text. We give more details on extracting braid
words from computational or experimental data, which
contains the three unique angle differences at each time
step. The defect motion consistent with any braid gener-
ator takes a tetrahedral configuration to another tetrahe-
dral configuration by passing through a co-planar config-
uration. So, to identify the braid generator, we need to
identify the initial configuration of the tetrahedron (right
or left handed orientation) and which co-planar config-
uration that it passes through. The initial tetrahedron
plus the series of subsequent co-planar configurations will
uniquely give us a braid word.

To identify the initial orientation of the tetrahedron,
we start with the cartesian positional vectors, ~ri, of each
labeled defect. Then calculate ((~r2−~r1)× (~r3−~r1)) ·~r4.
If it is > 0, then the tetrahedron has a right handed
orientation (C1 vertex labeling class), while if this value
is < 0, then it has a left handed orientation (C2 vertex
labeling class).

Next, note that starting with a given tetrahedral orien-
tation, there are three possible co-planar configurations
that are possible (see fig.4). We can determine which
of these co-planar configurations happens by noting the
pairs of labeled defects that are along the diagonals (i.e.
have angle differences that are close to 180◦). These pairs
of diagonal points determine the relative position of all
four points. Given the tetrahedral configuration prior to
the co-planar one, we can identify the pair of points be-
ing swapped in this transformation, thus matching the
transformation to a unique braid word.
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FIG. 4: The three co-planar configurations that are pos-
sible in going from the tetrahedron on the left to an-
other tetrahedral configuration. These correspond to

three braid generators.

To illustrate with an example, the tetrahedron on the
left side of fig. 4 is right handed (labeled with a ”+”).
If we know from the computational or experimental data
that point 1 and point 4 are the diagonals of the suc-
ceeding co-planar configuration, we know that point 3
and point 4 must swap in a CCW direction. So the ini-
tial tetrahedron must go through the braid generator σ1
to turn into the tetrahedron at the top right corner. Like-
wise, if point 1 and point 2 are the diagonals, the tetra-
hedron goes through the σ5 transformation; and if point
1 and point 3 are the diagonals, the tetrahedron goes
through the σ3 transformation. Given the initial posi-
tion of the points, the diagonal points of the following
co-planar configuration tell us which of the three genera-
tors we need in order to go to the next tetrahedron. The
next pair of diagonal points will tell us how to generate
the next tetrahedron. Thus giving us a string of braid
words.
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