
Supplementary Material

1 ARCHITECTURE DESCRIPTION AND OPTIMIZATION
A convolutional layer is first applied to the input. A series of dense blocks and encoding blocks followed
by a flatten and fully connected layers then encode the input to the parameterized latent distribution. A
series of decoding blocks and dense blocks then decode samples from the latent space to the output. Figure
S1 illustrates the general architecture we have selected for the latent mean and log-variance along with the
output mean (with the output log-variance being constant but trainable).

A convolutional architecture was initially implemented without the use of dense blocks, but reconstruction
of data is not very accurate with this architecture, even with some amount of hyperparameter tuning.
Ref. Zhu and Zabaras (2018) illustrated that the architecture implemented there can accurately predict the
data of our problem. The architecture contains many hyperparameters such as number of dense blocks,
number of layers in each dense block, dense block growth rate, stride of convolutions, fully connected
layer width, and others. There were three main goals for us in tuning the hyperparameters: accurate
reconstruction, ability to produce disentangled representations, and high computational efficiency. As
an example of hyperparameter tuning, we consider changes in the dense block growth rate keeping all
other hyperparameters constant. Ten VAEs were trained with the ELBO loss for each growth rate value
on the KLE2 dataset with p(θ) being standard normal. Figure S2 illustrates some statistics on this study.
The overall ELBO loss, and in particular the reconstruction loss continues to decrease with and increase
in growth rate, which is desirable. Good conclusions cannot be easily drawn from the disentanglement
statistics, although at each growth rate a disentangled representation was observed. However, as the growth
rate increases, the probability of convergence decreases. This may be improved by introducing lower
learning rates, but in our case increase training time was highly undesirable. Thus, a growth rate of 4 was
selected.

Figure S1. Dense VAE architecture.
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Figure S2. Hyperparameter selection example.

2 OVER-REGULARIZATION
To illustrate the avoidance of over-regularized local minima using our training method, Figure S3 shows
the training losses and β as a function of epoch. The VAE loss reaches a local minimum but continues
to increase as the true training loss decreases. With a small initial β (10−7), great emphasis is placed on
the reconstruction loss. When β begins to increase, the VAE is ’past’ the over-regularized region and the
training loss rapidly converges to the VAE loss, obtaining a desirable solution.

3 LOSS ANALYSIS WITH INCREASING NUMBER OF TRAINING SAMPLES
This study shows the relationship of the loss function and disentanglement with respect to the number of
data samples used to train the VAE (Figure S4). All results are obtained with β = 1 during training and a
latent dimension n = 2. For every number of training data ([32, 64, 128, 256, 512]), 10 VAEs are trained.

4 LOCAL MINIMA IN REGULARIZATION LOSS FROM ROTATION OF LATENT
SPACE

We hypothesize that local minima exist in the regularization loss with respect to rotations in the latent
space for the multimodal generative parameter distribution case. This results in the aggregated posterior
being rotated 45 degrees relative to the generative parameter distribution (Figure S5).
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Figure S3. Training with initial increased weight on reconstruction loss helps to avoid over-regularized
local minima.

Figure S4. Solid lines indicate averages over training data for 10 VAEs trained at each point. Dashed lines
represent averages over testing data. Ranges indicate minimum and maximum values. left Converged VAE
losses for various numbers of training samples. right Converged VAE disentanglement score as a function
of number of training samples.

5 REGULARIZATION LOSS AS A FUNCTION OF ROTATION OF LATENT ANGLE
Using rotationally-invariant priors does not enforce any particular rotation of the learned aggregated
posterior distribution. In contrast, a non-rotationally-invariant prior can be used to enforce a particular
rotation of the latent space (Figure S6).

6 DISENTANGLEMENT OF CORRELATED GENERATIVE PARAMETERS
Disentanglement has not been observed using our architecture when generative parameter distributions
exhibit correlations between dimensions. Figure S7 shows that the aggregated posteriors are rotated
relative to the generative parameter distributions, which does not facilitate learning a disentangled latent
representation.
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Figure S5. A 45 degree rotation of the latent space may be the result of local minima in the regularization
loss during training.

Figure S6. (left) Regularization loss unaffected by latent rotation when training with rotationally-invariant
priors, (right) regularization loss is affected by latent rotation when training with non-rotationally-invariant
priors.
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Figure S7. (top) aggregated posterior comparison correlations / rotations relative to the generative
parameter distribution, (bottom) worse disentanglement when correlations not expressed in latent space.
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