
SUPPLEMENTARY INFORMATION 
 
 
SI 1. Details on Metadynamics protocols 
 
 
In the context of infrequent Metadynamics the two-sample Kolmogorov-Smirnov (KS) test 

(Massey, 1951; Miller, 1956) can be used to assess the computed koff values. It exploits the fact 

that the times of escape from long-lived metastable states obey Poisson statistics. In practice, 

the empirical distribution of residence times is compared to a theoretical rare event distribution, 

and their agreement is assessed by computing the so-called p-value. (Salvalaglio et al., 2014) 

If the latter is greater than the significance threshold (usually set at 0.15), the empirical 

distribution is deemed indistinguishable from the theoretical one, proving the validity of the 

adopted Metadynamics protocol. 

 

SI 2. Gaussian Mixture-Based Enhanced Sampling 

 

Successful characterization of residence times from infrequent/FA MetaD simulations of 
ligand unbinding is heavily contingent on the avoidance of bias deposition on the transition 
state, and faithfully fulfilling this requirement is inherently nontrivial. Aside from the 
deficiencies of modern force-fields, it may be the case that unintentional tainting of the 
transition state is a factor that affects the accuracy of MetaD-derived koff values. The Gaussian 
mixture-based enhanced sampling (GAMBES) method recently proposed by Debnath and 
Parrinello (Debnath and Parrinello, 2020) provides an elegant means of bypassing these 
difficulties by constructing the external bias from probability distributions of configurations 
obtained from short MD simulations originating from the metastable states, such that the bias 
decays to zero on the fringes of the metastable states. Specifically, the combined probability 
densities associated with the metastable states are approximated by a Gaussian mixture model, 
and the exponential tails of the Gaussians are trimmed according to a pre-defined cutoff, thus 
ensuring that no bias is applied outside of the metastable states. First passage times between 
metastable states can then be rescaled to obtain unbiased residence times. The method has been 
applied to predict residence times for a set of 12 Octa-acid host-guest systems belonging to the 
SAMPL5 challenge, and while experimental values for these systems have not yet been 
determined, the trends observed in the calculated values for these systems correlate well with 
previously established trends in binding affinities. (Debnath and Parrinello, 2021) 
 
 



SI 3.  Scaled MD 

 

SI 3.1 Basic Principles 

The general protocol consists of simple application of a scaling factor l to the potential energy 

of the system, with l taking a value between 0 and 1. (Mark et al., 1991; Tsujishita et al., 1993) 

This translates into a flattening of the barriers between minima in the potential energy surface, 

thus enabling faster transitions between minima and accelerating the exploration of the full 

PES. Lower values of l correspond to a stronger degree of scaling, whereby the barriers in the 

potential energy surface are flattened.  

SI 3.2 Applications 

The method was recently applied to compute and rank relative residence times for five 

inhibitors of the hDAAO flavoprotein – an enzyme that is involved in the breakdown of D-

serine that is observed in some psychiatric disorders. (Bernetti et al., 2018) The sMD 

simulations made use of the AMBER99SB-ILDN forcefield (Hornak et al., 2006) and a scaling 

factor l= 0.45. A total of 90 trajectories were simulated for the five inhibitors, making a total 

of 3.4 µs of simulation time. Observed ligand exit times from the trajectories were taken as the 

calculated residence times tcalc, which were normalized with respect to tcalc of the ligand with 

the slowest experimental residence time texp. The ranking of the normalized residence times 

was compared to the ranking of their normalized experimental residence times – which were 

subjected to exponential scaling with l= 0.45 to facilitate comparison to the calculated values. 

The authors were able to correctly rank four of the five ligands, with a systematic 2 to 4-fold 

overestimation of the residence time, with one outlier which had a more significantly 

overpredicted residence time (by around 13-fold). The accuracy of these results appears to be 

a significant improvement on those that have been yielded by CV-based methods discussed 

previously, though attaining agreement between calculated and experimental residence times 

required normalization of both quantities to make the comparison valid. Additionally, the 

flattening of the PES in the trajectories make it likely that the unbinding routes taken in the 

simulation are unphysical, as they occur at a relatively high effective temperature.  

A similar sMD protocol (Schuetz et al., 2019) using the same scaling factor and force field was 

applied to the study the binding kinetics of seven inhibitors of Hsp90, with more efforts 



directed towards post-processing of the trajectories to reduce noise introduced by the high 

effective temperature, and subsequent mapping of the unbinding pathways onto a low 

dimensional space. In addition to the relative ranking of normalized tcalc that were made in the 

previous study of hDAAO inhibitors, direct comparisons were made between tcalc and texp were 

made. They were able to correctly reproduce the ranking of six of the seven compounds with a 

Pearson r2 coefficient of 0.89, however the direct comparison of tcalc and texp revealed that tcalc 

was systematically underestimated by seven to nine orders of magnitude.  

SI 3.3. Selectively scaled sMD with Kramers’-based rate extrapolation 

Finally, another approach based on sMD was proposed to predict the initial unbinding time 

(Deb and Frank, 2019), which the author defined as the first step in the unbinding process that 

can be modeled as a first-order transition. In this case, only the Lennard-Jones interactions 

between ligand and water are scaled by a parameter l > 1 in order to favor unbinding. The 

authors ran 100 independent simulations using 4 different values of l and fitted a simplified 

Kramers rate theory model to obtain the initial unbinding time (Frank and Andricioaei, 2016). 

Because these time predictions are not associated to the entire dissociation process but only the 

first step, the predictions for three different inhibitors of the CDK2 kinase underestimated the 

residence times by five orders of magnitude. 

 

Overall, evidence of the applicability of sMD to yield quantitative residence times is scant, and 

much like traditional TMD it appears better suited to relative ranking of lead compounds in 

early high-throughput screening at present.  

SI 4. Targeted MD 

SI 4.1 Basic principles 

Targeted MD (TMD) makes use of an external steering force, which is applied to a subset of 

atoms to pull them along a defined pathway or reaction coordinate 𝑥. (Schlitter et al., 1994) 

TMD introduces a periodically updated holonomic constraint force 𝑓! into the simulation, 

which slowly steers the pull group along 𝑥 from an initial state 𝑥" to a final state 𝑥# at a constant 

velocity 𝑣!. For a protein-ligand system, the steering coordinate 𝑥 is essentially the radial 

component of a spherical polar coordinate system, which would correspond to the distance 



between the center-of-mass of the binding pocket and that of the ligand. Thus, the ligand is 

able to explore configurational space perpendicular to 𝑥, and can freely perform rotations and 

conformational changes. Ideally, 𝑣! is much slower than the other degrees of freedom of the 

ligand, such that 𝑣! is unaffected by friction forces and acceleration due to free energy 

gradients. Running large ensembles of TMD simulations ensures that the effect of stochastic 

forces on 𝑣! are effectively eliminated. Integrating 𝑓! along 𝑥 for all trajectories in the ensemble 

yields the ensemble-averaged nonequilibrium work 〈𝑊〉	performed on the system. This is then 

used to obtain the free energy profile	∆𝐺(𝑥) directly, as shown by Wolf and Stock. (Wolf and 

Stock, 2018)  

SI 4.2 Applications 

A TMD protocol using the Amber99SB (Hornak et al., 2006) force field was applied to 

investigate the correlation between the 〈𝑊〉 and the experimental koff for a set of twenty-six 

potential inhibitors of the chaperone heat shock protein Hsp90; some of which bound to helix 

domains, while others bound to loop domains. Fitting the full set of calculated 〈𝑊〉 values for 

all of the ligands against their experimental koff yielded a low Pearson’s correlation coefficient 

r2 = 0.45. However, when the nine helix binders were considered alone, the correlation between 

〈𝑊〉 and experimental koff for these compounds was relatively strong, with an r2 value of 0.80. 

These results indicate that TMD could be useful for initial qualitative ranking of site-specific 

lead compounds in high-throughput screenings, especially since each prediction required only 

10 ns of aggregate TMD simulation time. 

 

SI 5. Qualitative applications of tRAMD 
 
In the first application of the tRAMD method, a set of 70 drug-like compounds binding to 

Hsp90a were investigated and ranked according to their computed relative residence times. 

(Kokh et al., 2018) The simulations made use of the AMBER14 force field (Maier et al., 2015) 

for the protein in conjunction with GAFF(Wang et al., 2004) for the ligands, and force of 

magnitude 14 kcal mol-1Å-1 was applied to the ligand at each 100 fs checkpoint. Very good 

correlation (r2 = 0.86) between tcomp and experimentally measured residence times texp was 

achieved for 78% of the compounds, while the residence times for the other 22% of the 

compounds were underestimated. A follow up study included 25 additional Hsp90a inhibitors, 

and implemented machine learning protocols on the combined datasets to uncover molecular 



determinants of longer residence times, and to predict corrected tcomp values for the compounds 

with underestimated residence times with regression models trained on tcomp and experimental 

(texp) values for the other compounds. (Kokh et al., 2019) Since 2020, the tRAMD protocol has 

been fully implemented in the GROMACS MD engine (Abraham et al., 2015) as an open-

source solution for the calculation of relative ligand residence times for other systems. (Kokh 

et al., 2020) 

 

SI 6 Methodological details of MSMs discussed in Section 3 

 

The work of Plattner and Noé (Plattner and Noé, 2015) on the trypsin-benzamidine system in 

2015 provides an archetypal example of how MSMs are applied to calculate koff values for 

ligand-enzyme complexes. The system was modeled using the AMBER99SB(Hornak et al., 

2006) force field for the trypsin enzyme, and GAFF(Wang et al., 2004) for the benzamidine 

ligand, for an aggregate simulation time of 149.1 µs. This was split amongst 491 trajectories 

of 100 ns duration, 4 of 1 µs duration and 48 of 2 µs duration, all of which were unbiased. A 

time-lagged independent component analysis (TICA) was performed to reduce the 

dimensionality of the trajectories by identifying five maximal-variance projection vectors that 

correspond to the most slowly evolving components of the proteins conformational space. This 

was followed by uniform distance clustering, to yield a set of 273 microstates for which a 

transition matrix was computed, using a lag time t of 30 ns. Coarse-graining of microstates into 

metastable macrostates was achieved through Perron-cluster cluster analysis (PCCA++) 

(Röblitz and Weber, 2013).The mean number of t intervals between the all of the macrostates 

visited from the bound state to the unbound state can then be used to calculate an overall mean 

first passage time (MFPT) from the bound to the unbound state, and koff as its inverse.  

 

A similar protocol was employed in the investigation of the binding mechanism of T4 lysozyme 

L99A in complex with benzene. (Mondal et al., 2018) Six extended trajectories in the ms 

regime and 300 shorter trajectories of unbiased dynamics using the CHARMM36 (Best et al., 

2012) force field were collected, yielding 59 µs of gross simulation time from which an MSM 

with a 10 ns time lag was constructed. After discretization (using the k-means clustering 

algorithm) of the 12 TICA components of the system, a total of 100 microstates were unearthed. 

Rather than PCCA++, a hidden Markov model (HMM) (Noé et al., 2013)was employed to 

yield a macrostate MSM with four metastable states from the 100-state MSM. MFPT values 



were extracted from the coarse-grained model, giving a koff = 310 ± 130 s-1. This koff value was 

marginally closer to the experimental koff (950 ± 20 s-1)(Feher et al., 1996) than the value 

calculated from their infrequent MetaD simulations (270 ±100 s-1)(Mondal et al., 2018), 

however the larger error range and relatively large amount of simulation time required possibly 

offsets this benefit. 

SI 7. A highly scalable QM/MM code 

A highly scalable QM/MM code has been developed by our group at Juelich in collaboration 

with a large European consortium. This is the so-called MiMiC interface (Bolnykh et al., 2019; 

Olsen et al., 2019), which allows subnanosecond QM/MM MD simulations of biologically 

relevant systems. (Chiariello et al., 2020) MiMiC has been designed as a general multiscale 

simulation framework that enables the combination of multiple resolutions and methods for 

different parts of a system, while retaining high computational efficiency (Bolnykh et al., 

2020a). Improving the scalability of MiMiC could allow for conformational sampling and 

optimization at the QM/MM level exploiting exascale machines (Rovira, 2013; Bolnykh et al., 

2020b). 

 

SI 8. Hybrid machine learning / molecular mechanics potentials  

In machine learning / molecular mechanics ML/MM potentials, the energy is decomposed as 

 

𝑈 =	𝑈$% +	𝑈$$ 	+ 𝑈$%/$$ 			 

            

where 𝑈$%, 𝑈$$  and 𝑈$%/$$ 	are the potential energy resulting from the interactions between 

atoms within the ML region, within the MM region, and between atoms belonging to different 

regions respectively. The main challenge for ML/MM simulations is the calculation of 

𝑈$%/$$. A simple solution for computing 𝑈$%/$$ 	is inspired by the mechanical embedding 

approach commonly used in QM/MM simulations. Briefly, the atoms in the ML region are 

assigned point charges and Lennard-Jones parameters, and 𝑈$%/$$ 	is simply computed using 

the force field, while a neural network (NN) is used exclusively to predict 𝑈$%	(Lahey and 

Rowley, 2020; Galvelis et al., 2022) The partial charges can be fixed throughout the simulation, 

or they can be predicted by the NN itself (Xu et al., 2021) This approach was adopted to 



improve the accuracy of relative binding free energy predictions using alchemical methods 

(Rufa et al., 2020) It has also been applied to modelling metalloproteins (Xu et al., 2021) 

refining protein-ligand structures from electron density data (Vant et al., 2020) An important 

advantage of this strategy is that it is in principle compatible with the many existing NN 

architectures designed for full ML-potential simulations. Moreover, long-ranged interactions 

are automatically included in the potential at the MM level. On the other hand, polarization and 

charge transfer effects between the MM and QM regions are ignored. In more recent years, 

other NN potentials capable of incorporating the effects of the MM environment have been 

developed. In most of these methods, the NN computes only a correction to a low-level 

(typically semi-empirical) Hamiltonian, which besides modelling much of the physics at a 

reasonable cost, comes with established routes to incorporate long-ranged interactions. The 

main difference between these methods consists in how the MM environment is represented. 

In one approach, all the MM atoms within a cutoff distance explicitly enter the NN inputs, and 

they differ from the ML atoms only because they are assigned a specific MM type. (Böselt et 

al., 2021; Zeng et al., 2021) Other NN architectures model the MM environment implicitly, for 

example by representing it either with Mulliken charges computed with the low-level 

potential(Wu et al., 2017), as an external electrostatic potential generated by the MM atoms 

and defined on a grid (Shen and Yang, 2018), or as an external electric field acting on NN-

predicted dipoles.(Gastegger et al., 2021) Another approach based on the representation of the 

MM environment as both an external potential and electric field was successfully employed to 

reproduce the free energy profile of an enzymatic reaction at the B3LYP/MM level of theory. 

(Pan et al., 2017) 
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