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Appendix A: Mathematical proof for stack
operation of two MPS

For simplicity, we consider performing the stack oper-
ation of two MPS: |ψα⟩, |ψβ⟩, which can be written as

[
|ψα⟩, |ψβ⟩

]
= |ψα⟩ ⊗ |0⟩+ |ψβ⟩ ⊗ |1⟩ (A1)

and

|ψα⟩ =
∑
{σ}

Tr [Mσ0
α Mσ1

α . . .Mσn−1
α ] |σ0, . . . , σn−1⟩ (A2)

|ψβ⟩ =
∑
{σ}

Tr
[
Mσ0

β Mσ1

β . . .M
σn−1

β

]
|σ0, . . . , σn−1⟩

are the two MPS’s. We seek to find a new MPS |ϕ⟩ which
exactly represents the stacked operation from Eq. (A1).
We denote the new MPS as

|ϕ⟩ =
∑
{σ}

Tr
[
M̃σ0M̃σ1 . . . M̃σn−1

]
|σ0, . . . , σn−1⟩ (A3)

To see the detailed structure of each M̃σi in the above
expression, we expand both terms on the right-hand side
of Eq. (A1)

|ψα⟩|0⟩ (A4)

=
∑

σ0,...,σn−1

Tr [Mσ0
α Mσ1

α . . .Mσn−1
α ] |σ0, . . . , σn−1⟩|0⟩

=
∑

σ0,...,σn

Tr [Mσ0
α Mσ1

α . . .Mσn−1
α ] δσn

0 |σ0, . . . , σn−1⟩|σn⟩

=
∑

σ0,...,σn

Tr [Mσ0
α Mσ1

α . . .Mσn−1
α ∆σn

0 ] |σ0, . . . , σn−1, σn⟩

where ∆σn
0 = δσn

0 I, and I is the identity matrix of which
the row size is the same as the column size of the previous
site matrix M

σn−1
σ .

Similarily, we have

|ψβ⟩|1⟩ (A5)

=
∑

σ0,...,σn

Tr
[
Mσ0

β Mσ1

β . . .M
σn−1

β ∆σn
1

]
|σ0, . . . , σn−1, σn⟩

By summing up Eq. (A4) and (A5), we obtain

|ψα⟩ ⊗ |0⟩+ |ψβ⟩ ⊗ |1⟩ (A6)

=
∑
{σ}

Tr [Mσ0
α Mσ1

α . . .Mσn−1
α ∆σn

0 ] |σ0, . . . , σn−1, σn⟩

+
∑
{σ}

Tr
[
Mσ0

β Mσ1

β . . .M
σn−1

β ∆σn
1

]
|σ0, . . . , σn−1, σn⟩

=
∑
{σ}

Tr [Mσ0
α Mσ1

α . . .Mσn−1
α ∆σn

0

+Mσ0

β Mσ1

β . . .M
σn−1

β ∆σn
1

]
|σ0, σ1, . . . , σn−1, σn⟩

=
∑
{σ}

Tr

{[
Mσ0

α

Mσ0

β

]T [
Mσ0

α 0
0 Mσ0

β

]
· · ·

[
M

σn−1
α 0
0 M

σn−1

β

] [
∆σn

0 0
0 ∆σn

1

]}
|σ0, σ1, . . . , σn−1, σn⟩

=
∑
{σ}

Tr
[
M̃σ0M̃σ1 . . . M̃σn−1∆̃σn

]
|σ0, σ1, . . . , σn−1, σn⟩

=
∑
{σ}

Tr
[
M̃σ0M̃σ1 . . . M̃σn−1

]
|σ0, σ1, . . . , σn−1, σn⟩

Note that for the first site σ0, the resulting matrix M̃σ0

is stacked in row geometry [see the first site of the re-
sulting stacked MPS in Fig. 4], all the other matrices

M̃σj (j = 1, · · · , n− 1) are block diagonal [Fig. 4], as the
stack operation is essentially equivalent to a direct sum
of local matrices. In the final step of the above equation,
to maintain the form of the stacked MPS as shown in
Eq. (A3), we have absorbed ∆̃σn into M̃σn−1 and refor-
mulate it as

M̃σn−1 → M̃σn−1∆̃σn (A7)

=

[
M

σn−1
α 0
0 M

σn−1

β

] [
∆σn

0 0
0 ∆σn

1

]
=

[
M

σn−1
α ∆σn

0 0
M

σn−1

β ∆σn
1

]
which is still block diagonal, but each block with size
D × 1.

The above process is the stack operation for two MPS,
and it is easy to extrapolate to the stack operation of
n MPS. For simplicity, we assign MPS with the same
auxiliary dimension D for each bond. It is not necessary
as they can be different. One only needs to change the
diagonal block indices from (D,D) to (Di, Dj).
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