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1 FREE VIBRATION ANALYSIS FOR THE FREE-FREE EULER-BERNOULLI BEAM

1.1 Natural frequencies and mode shapes

Considering an Euler-Bernoulli beam with two free ends, the governing equation for the motion of
transverse free vibration reads Geradin and Rixen (2015)
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where w = w(z, t) is the lateral displacement of the beam. While E, A, ρ, L and I denote, respectively,
Young’s modulus, cross-section area, mass density, length and second moment of area of the beam.

Assuming a form of time-harmonic solution w(z, t) = W (z)eiωt, Eq. (S.1) becomes
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where m = ρA and ω denotes the angular frequency. For the uniform beam with constant cross- section,
Eq. (S.3) can be written as
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where k4 = mω2

EI . The characteristic equation of Eq. (S.4) has the following simple form

λ4 = k4, (S.5)

which gives four distinct roots:

λ1 = k, λ2 = −k, λ3 = ik, λ4 = −ik. (S.6)

This immediately gives the general solution of Eq. (S.4):

W (z) = C1 cos(kz) + C2 sin(kz) + C3 cosh(kz) + C4 sinh(kz), (S.7)
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with four arbitrary constants Cn (n = 1, 2, 3, 4). The condition for non-trivial solutions and boundary
conditions Eq. (S.2) lead to the following transcendental equation:

cos(µ) cosh(µ) = 1, (S.8)

with unknown µ = kL. Roots of Eq. (S.8) µn (n = 1, 2, 3, · · ·), correspondingly, kn (n = 1, 2, 3, · · ·),
give the eigenvalues for Eq. (S.3), i.e., natural frequencies ωn (n = 1, 2, 3, · · ·) that we’re interested in.
For clarity, the first three zeros are illustrated in. Accordingly, the natural frequency of the transverse free
vibration of the free-free Euler-Bernoulli beam becomes
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After some tedious derivation, one can obtain the corresponding eigenmodes (i.e., the natural mode
shapes) as follows
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1.2 Orthogonality of mode shapes

Orthogonality of eigenmodes is indispensable for the derivation of eigenvalue problems in the main text.
For the constant cross-section beam, the orthogonality condition states that given any two eigenmodes
Wn(z) and Wm(z), which correspond to two distinct eigenfrequencies ωn and ωm, the following equation
holds true

⟨Wn,Wm⟩ = 0, (S.11)

herein, for the sake of brevity, the inner product notation ⟨f, g⟩ was introduced to represent the integral of
two functions f and g over the interval [0, L], i.e.,

⟨f, g⟩ =
∫ L

0
f(z)g(z)dz.

To proof this conclusion, we use the fact that both Wn(z) and Wm(z) satisfy Eq. (S.3), that is,
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Taking the inner product of Eq. (S.12a) and Wm and that of Eq. (S.12b) and Wn, we obtain:〈
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Applying the integration by parts to the left-hand side of Eq. (S.13), one may get
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Subtracting Eq. (S.14b) from Eq. (S.14a) and imposing boundary conditions listed in Eq. (S.2), we have
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For uniform beam with constant cross-section, it immediately lead to the conclusion that for two distinct
eigenfrequencies (i.e., ωn ̸= ωm) Eq. (S.11) holds true.

For the case when m = n,

⟨Wn, ρAWn⟩ =
∫ L

0
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2dz = Mn,

where, obviously, Mn is some positive number. The transformation was introduced to get the normalized
eigenmode W̃(n)(z) as follows:

W̃(n) =
Wn√

⟨Wn, ρAWn⟩
, (S.16)

then, using Eq. (S.13), one can immediately obtain the following equation:〈
W̃(n),

d2

dz2
(EI

d2W̃(n)

dz2
)

〉
= ω2

n. (S.17)

In conclusion, the orthogonality of mode shapes can be expressed as〈
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where W̃(n) was defined through Eq. (S.16) and

δnm =

{
1, n = m

0, n ̸= m
, (n,m = 1, 2, 3, · · ·).
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2 CALCULATIONS OF BERRY CURVATURE AND VALLEY CHERN NUMBERS

This section presents details of the numerical calculation of Berry curvature and valley Chern numbers.
Note that the two bands above the first bandgap have a degeneracy at Γ point, and so do the two bands
above the second bandgap. Thus, we have to calculate the combined Chern numbers associated these
degenerate bands Wang et al. (2015), using the eigenvectors obtained from theoretical model and the
eigenmodes data of an A-type unit cell output from FEM respectively.

2.1 Theoretical model

As stated in the main text, our beam-spring model give rise to the eigenvalue problem expressed as:

K(k)ψ = ω2Mψ, (S.19)

where k is the Bloch-wave vector. Solving Eq. S.19 for wave vectors k within the first Brillouin zone, we
obtain the dispersion diagram ω = ω(k) and the eigenvectors ψ. For the 2D k-space spanned by the basis
vectors b1 and b2, we use a Nk1 × Nk2 grid that covers the first Brillouin zone (see figure S1), with Nk1

and Nk2 being the number of grid points along b1 and b2, respectively. The eigenvector associated to the
n-th band is then a vector field, ψ(k) = ψn(k1, k2) defined on a 2D discretized parametric domain.

Figure S1. Schematic of a small patch (gray area) on the parallelogram spanned by basis vectors b1 and
b2, which exactly covers the first Brillouin zone represented by the green hexagon region.

Following the procedure presented in Wang et al. (2015), we calculate the Berry flux associated to the
n-th and m-th bands, F̃mn, for a small patch of the size ∆k1 ×∆k2 on the k-grid:

F̃mn(k) = ln

(
D(k,k′)D(k′,k′′)D(k′′,k′′′)D(k′′′,k)

D(k,k)D(k′,k′)D(k′′,k′′)D(k′′′,k′′′)

)
, (S.20)
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where k = (k1, k2), k′ = (k1+∆k1, k2), k′′ = (k1+∆k1, k2+∆k2), k′′′ = (k1, k2+∆k2), andD(k,k′)
is the determinant of a 2× 2 matrix expressed by:

D(k,k′) =

(
⟨ψn(k),ψn(k

′)⟩ ⟨ψn(k),ψm(k′)⟩
⟨ψm(k),ψn(k

′)⟩ ⟨ψm(k),ψm(k′)⟩

)
, (S.21)

where the inner product of two eigenvectors on the n-th and m-th bands is defined as:〈
ψn(k),ψm(k′)

〉
= [ψn(k)]

†ψm(k′). (S.22)

Note that F̃mn in Eq. S.20 is defined within the principal branch of the logarithm function such that

− π <
1

i
F̃mn(k1, k2) ≤ π ∀k1, k2. (S.23)

Then the Berry curvature Fmn on this patch is defined as
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where dS is the area of the small patch:
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|. (S.25)

We calculate the combined Berry curvatures associated with the two bands above the first and second
bandgap in MATLAB by setting Nk1 = Nk2 = 100. The results are shown in the left column of figure 4B
in the main text. Finally, the valley Chern number can be evaluated by computing the numerical integration
of the Berry curvature over the half of the first Brillouin zone:
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2π
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∑
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with v being K or K ′.

2.2 FEM

We perform the dispersion analysis of the periodical infinite structure in the commercial finite element
software COMSOL Multiphysics by using one unit cell, whose Bloch modes corresponding to the
bands of interest at uniformly discretized k points covering the first Brillouin zone are exported for
subsequent processing. All calculation procedures are the same as the previous subsection, except that
the eigenvectors used in Eqs. S.20, S.21 and S.22 need to be replaced with the corresponding Bloch
modes, which can be expressed as
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with n being the total number of FE nodes of the unit cell model.
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Along this path, the combined Berry curvatures associated with the two bands above the first and second
bangap are shown in the right column of figure 4B in the main text, which are in good agreement with
those obtained by theoretical model. Finally, the numerical valley Chern number can be evaluated by the
same way as the previous subsection and almost the same results are obtained.
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