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SUPPLEMENTARY APPENDIX S1
TERRAIN CLUSTER EROSION AND DILATION

In practice, it is not desirable to place cost exploration goals at the boundaries of terrains classes because,
in such areas, a real robot with the imprecise path following might fail to traverse the correct terrain, and
the descriptors in such areas might be distant from the prototype ta(7"). Besides, it might not be possible to
acquire enough samples to learn the traversal cost on a small terrain area of a particular class. Hence, after
assigning the terrain classes to cells, we erode cells that border different (or already eroded) terrain class
using
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where & is the eroded non-class terrain, 7'~ and 7'~ are the class assignments before and after an erosion
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step, respectively, and the erosion process is repeated n_. ,.-times.

As a result of the erosion, some cells are assigned the eroded non-class & with no prototype to use.
Hence, when assigning cost predictions for path planning, we first dilate the terrain classes by selecting the
most common class in the vicinity as
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where 8nb"dle is the S -times repeated neighborhood function 8nb, 7 and 7 are the class
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assignments before and after a dilation step, respectively, and the dilation process is repeated ”(Siti?ate
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SUPPLEMENTARY APPENDIX S2
GAUSSIAN PROCESS REGRESSION

Assuming function f(x) that is observed with the noise €
y=f(x)+e ecN(0,02),
Gaussian Process (GP) is defined as the distribution
f(@) ~ GP(m(x), K(z,2")),

where m(z) is the mean

and K (z,2') is the covariance

K(z,2') = E[(f(z) —m(x)) (f(2') —m(a"))].

Given the training data X, the GP regressor’s predictions and the query X, are

p(X.) = K(X, X,) [K(X, X) +021] 'y,
(o(X.))2 = K(X., X.)
— K(X, X)T [K(X, X) + 021 K(X, X.),

where K (X, X') is the covariance function.
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SUPPLEMENTARY APPENDIX S3

INCREMENTAL GROWING NEURAL GAS

The Incremental Growing Neural Gas (IGNG) is a soft-computing clustering approach proposed by Prudent
and Ennaji (2005). The approach builds on the Growing Neural Gas (GNG) (Fritzkel |1994), which adapts
a graph topology to continually provided measurements. However, unlike the GNG, which is enlarged after
a fixed number of measurement adaptation steps, the IGNG is only grown when adapting to a value x that
is out of the bounds of the current structure.

Algorithm 1: Incremental Growing Neural Gas: Adaptation

Input: 2 — IGNG structure with terrain classes 7; x — Adapted measurement for the terrain

descriptor ta.

Output: 2 — IGNG structure for the terrain classes 7).

1 Procedure adapt IGNG ({2, =)

2 wi — argming,cq ||z, w||
s | s axgmin g o 12,0
4 | i [Qewrons| = 0V ||z, w1]| > o'NC then
5 L Oneurons <= 2 U Whew, Wnew = T
6 else
7 if |Qewrons] = 1V ||z, wa|| > o/6NC then
8 Qneurons <= neurons U Whew, Wnew = T
9 B Qconnections = 2connections U (xa Wl)
10 else
11 Wy < wy + ellGNG(x — wy)
12 for w,;, € nb(wy) do
13 Wb — Wpb + eig’NG(x — Whb)
14 a(wi,wnp) < a(wi,wpp) + 1
15 if (wl, W2) € Qconnections then
16 L a((wy,wz)) <0
17 else
18 L Qconnections <= connections U (w1, w2)
19 for w,, € nb(wp) do
20 L a(wnp) < a(wpp) +1
21 for (wa, wy) € Qeonnections : a((Wa, wp)) > alSNG do
22 L Qconnections — Qconnections/ (Waa Wb)
23 | for w € Qeurons : a(w) > alSNC do
24 if _‘Elwlgneurons : (w7 w/) € Qcormections then
25 L hneurons <= Cneurons/w
26 return )

// Find the closest neuron to the adapted measurement.
// Find the second closest.
/1 If there are no neurons or the closest is too far.

// Add the measurement as a new neuron.

// If there is only 1 neuron or the second closest is too far.
/I Add the measurement as a new neuron.

/I Connect the new neuron with the closest.

/I Warp the closest neuron to the measurement.
// For each neighbor of the closest neuron.
// Warp it to the measurement.

/I And age their connections.

/1 1f the first and closest are connect.

// Reset the connection age.

/I Otherwise insert new connection.

// For each neighbor of the closest neuron.

/I Age the neighbor.

// Find too old connections.

// And remove them.

// Find isolated mature neurons.

/I And remove them.
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The IGNG adaptation is summarized in Alg. |1} and it operates as follow The algorithm keeps a graph
of neurons (graph vertices) and their connections (graph edges) and keeps an age value for each neuron and
connection. When adapting to a new measurement x, the algorithm first finds the closest neuron w; and the
second closest neuron wo. If the graph is empty or the closest neuron is too far with ||z — wy|| > o'NG, a
new embryo neuron wpey With the age a(wpew) = 1 is inserted at . If w; is close enough, but the second
closest wy is not, or there is only one neuron in the graph, a new neuron is also inserted at z. Moreover, an
edge between the new neuron and wy is inserted into the graph with the age a((w1, wpew)) = 0.

If both w; and wo are close enough, wy and all of its neighbors (neurons with an existing connection to
w1) are warped towards x by ellGNG and EL%}NG, respectively. Then, if there is already a connection between
w1 and wy, its age is set to 0. Otherwise, the connection is created. Next, the ages of all neighbors a(wyp)
of w; and their respective connections a((w1, wyp)) are incremented by one.

After adapting to the measurement, the graph is pruned to remove old connections and isolated neurons.
In general, it is desirable for neurons to be old (since measurements were often observed near then) and for
connections to be young (since measurements were recently observed along the edge). First, we identify
neurons that are mature with a(w) > a!SNS Then, connections that are too old with a((w,w’)) > alSNG

are removed from the graph. If it leads to isolated mature neurons, these are also removed.
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! The herein presented description is limited to the basic operation of the algorithm and omits its use for semi-supervised labeling since it is not used in the
presented work. We refer the interested reader to Prudent and Ennayji| (2005)).




