
Prágr et al. Exploration with Traversability Models Learning

SUPPLEMENTARY APPENDIX S1

TERRAIN CLUSTER EROSION AND DILATION

In practice, it is not desirable to place cost exploration goals at the boundaries of terrains classes because,
in such areas, a real robot with the imprecise path following might fail to traverse the correct terrain, and
the descriptors in such areas might be distant from the prototype ta(T). Besides, it might not be possible to
acquire enough samples to learn the traversal cost on a small terrain area of a particular class. Hence, after
assigning the terrain classes to cells, we erode cells that border different (or already eroded) terrain class
using

T−−(ν) =

{
T−(ν) if ∀ν ′ ∈ 8nb(ν) : T−(ν) = T−(ν ′),

∅ otherwise,
(1)

where ∅ is the eroded non-class terrain, T− and T−− are the class assignments before and after an erosion
step, respectively, and the erosion process is repeated nsteps

erode-times.

As a result of the erosion, some cells are assigned the eroded non-class ∅ with no prototype to use.
Hence, when assigning cost predictions for path planning, we first dilate the terrain classes by selecting the
most common class in the vicinity as

T++(ν) =

argmaxT∈T
∑

ν′∈8nb
nsize

dilate(ν)
|T = T+(ν ′)| if ∃ν ′ ∈ 8nbn

size
dilate(ν) : T+(ν ′) 6= ∅,

∅ otherwise,
(2)

where 8nbn
size
dilate is the nsize

dilate-times repeated neighborhood function 8nb, T+ and T++ are the class
assignments before and after a dilation step, respectively, and the dilation process is repeated nsteps

dilate-times.

Frontiers 1

Prágr et al. Exploration with Traversability Models Learning

SUPPLEMENTARY APPENDIX S2

GAUSSIAN PROCESS REGRESSION

Assuming function f(x) that is observed with the noise ε

y = f(x) + ε, ε ∈ N (0, σ2
ε), (3)

Gaussian Process (GP) is defined as the distribution

f(x) ∼ GP(m(x), K(x, x′)), (4)

where m(x) is the mean
m(x) = E [f(x)] , (5)

and K(x, x′) is the covariance

K(x, x′) = E
[
(f(x)−m(x))

(
f(x′)−m(x′)

)]
. (6)

Given the training data X , the GP regressor’s predictions and the query X∗ are

µ(X∗) = K(X,X∗)
[
K(X,X) + σ2

ε I
]−1

y,

(σ(X∗))
2 = K(X∗, X∗)

−K(X,X∗)
T
[
K(X,X) + σ2

ε I
]−1

K(X,X∗),

(7)

where K(X,X ′) is the covariance function.

2

Prágr et al. Exploration with Traversability Models Learning

SUPPLEMENTARY APPENDIX S3

INCREMENTAL GROWING NEURAL GAS

The Incremental Growing Neural Gas (IGNG) is a soft-computing clustering approach proposed by Prudent
and Ennaji (2005). The approach builds on the Growing Neural Gas (GNG) (Fritzke, 1994), which adapts
a graph topology to continually provided measurements. However, unlike the GNG, which is enlarged after
a fixed number of measurement adaptation steps, the IGNG is only grown when adapting to a value x that
is out of the bounds of the current structure.

Algorithm 1: Incremental Growing Neural Gas: Adaptation
Input: Ω – IGNG structure with terrain classes T ; x – Adapted measurement for the terrain

descriptor ta.
Output: Ω – IGNG structure for the terrain classes T).

1 Procedure adaptIGNG(Ω, x)
2 ω1 ← argminω∈Ωneurons ‖x, ω‖ // Find the closest neuron to the adapted measurement.

3 ω2 ← argminω∈Ωneurons/ω1 ‖x, ω‖ // Find the second closest.

4 if |Ωneurons| = 0 ∨ ‖x, ω1‖ > σIGNG then // If there are no neurons or the closest is too far.

5 Ωneurons ← Ω ∪ ωnew, ωnew = x // Add the measurement as a new neuron.

6 else
7 if |Ωneurons| = 1 ∨ ‖x, ω2‖ > σIGNG then // If there is only 1 neuron or the second closest is too far.

8 Ωneurons ← Ωneurons ∪ ωnew, ωnew = x // Add the measurement as a new neuron.

9 Ωconnections ← Ωconnections ∪ (x, ω1) // Connect the new neuron with the closest.

10 else
11 ω1 ← ω1 + εIGNG

1 (x− ω1) // Warp the closest neuron to the measurement.

12 for ωnb ∈ nb(ω1) do // For each neighbor of the closest neuron.

13 ωnb ← ωnb + εIGNG
nb (x− ωnb) // Warp it to the measurement.

14 a(ω1, ωnb)← a(ω1, ωnb) + 1 // And age their connections.

15 if (ω1, ω2) ∈ Ωconnections then // If the first and closest are connect.

16 a((ω1, ω2))← 0 // Reset the connection age.

17 else
18 Ωconnections ← Ωconnections ∪ (ω1, ω2) // Otherwise insert new connection.

19 for ωnb ∈ nb(ω1) do // For each neighbor of the closest neuron.

20 a(ωnb)← a(ωnb) + 1 // Age the neighbor.

21 for (ωa, ωb) ∈ Ωconnections : a((ωa, ωb)) > aIGNG
max do // Find too old connections.

22 Ωconnections ← Ωconnections/(ωa, ωb) // And remove them.

23 for ω ∈ Ωneurons : a(ω) ≥ aIGNG
mature do // Find isolated mature neurons.

24 if ¬∃ω′Ωneurons : (ω, ω′) ∈ Ωconnections then // And remove them.

25 Ωneurons ← Ωneurons/ω

26 return Ω

Frontiers 3

Prágr et al. Exploration with Traversability Models Learning

The IGNG adaptation is summarized in Alg. 1, and it operates as follows1. The algorithm keeps a graph
of neurons (graph vertices) and their connections (graph edges) and keeps an age value for each neuron and
connection. When adapting to a new measurement x, the algorithm first finds the closest neuron ω1 and the
second closest neuron ω2. If the graph is empty or the closest neuron is too far with ‖x− ω1‖ > σIGNG, a
new embryo neuron ωnew with the age a(ωnew) = 1 is inserted at x. If ω1 is close enough, but the second
closest ω2 is not, or there is only one neuron in the graph, a new neuron is also inserted at x. Moreover, an
edge between the new neuron and ω1 is inserted into the graph with the age a((ω1, ωnew)) = 0.

If both ω1 and ω2 are close enough, ω1 and all of its neighbors (neurons with an existing connection to
ω1) are warped towards x by εIGNG

1 and εIGNG
nb , respectively. Then, if there is already a connection between

ω1 and ω2, its age is set to 0. Otherwise, the connection is created. Next, the ages of all neighbors a(ωnb)
of ω1 and their respective connections a((ω1, ωnb)) are incremented by one.

After adapting to the measurement, the graph is pruned to remove old connections and isolated neurons.
In general, it is desirable for neurons to be old (since measurements were often observed near then) and for
connections to be young (since measurements were recently observed along the edge). First, we identify
neurons that are mature with a(ω) ≥ aIGNG

mature. Then, connections that are too old with a((ω, ω′)) > aIGNG
max

are removed from the graph. If it leads to isolated mature neurons, these are also removed.

REFERENCES

Fritzke, B. (1994). A growing neural gas network learns topologies. In Conference on Neural Information
Processing Systems (NIPS). 625–632

Prudent, Y. and Ennaji, A. (2005). An incremental growing neural gas learns topologies. In International
Joint Conference on Neural Networks (IJCNN). vol. 2, 1211–1216. doi:10.1109/IJCNN.2005.1556026

1 The herein presented description is limited to the basic operation of the algorithm and omits its use for semi-supervised labeling since it is not used in the
presented work. We refer the interested reader to Prudent and Ennaji (2005).

4

