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Appendix

Appendix A (Lattices)

(a) Ordered set and lattice

An ordered set P is defined as a set in which an order relation < is given such that for any elements a, b, c € P,
MHha<a;

(i)a < band b < a implies a = b;

(iii)a < band b < c implies a < c.

A lattice L is an ordered set in which, for any X,y € L, “meet”, x Ay € L, and “join”, x V' y € L are defined,
where XAy < x,x ANy < y;ifz<x,z<y,thenZz<xAyandx <xVyy<xVyifx<2zy<z
thenxVy < z.

(b) Distributive lattice

A lattice L is a distributive lattice if and only if for any a,b,c € P,aA(bVc) = (aAb)V (a Ac).

(¢) Complemented lattice

A lattice L is a complemented lattice if and only Va € L,3at € L suchthata Aa* = 0andaVvatl =
1, where 0 and 1 represent the least and the greatest element, respectively.

(d) Boolean lattice (classical logic)

A Boolean lattice is defined as a distributive complemented lattice.

(e) Orthocomplemented lattice

A lattice L is an orthocomplemented lattice if and only if Va € L, 3a* € L such that
(YaAat=0oraVvat =1,

(i)a < b= bt <al;

(iii) att = a.

(f) Orthomodular lattice (quantum logic)

An orthocomplemented lattice L is an orthomodular lattice if and only ifa < b = b = aV(bAa?t),
VYa,b € L,at € L.

Appendix B (Rough set lattices)

(a) Equivalence relation
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Given a set S, R € SXS is an equivalence relation if and only if for a, b, c € S,
(1) aRa;

(i1) aRb implies bRa and vice versa;

(ii1) aRb and bRc implies aRc.

(b) Equivalence class

Given an equivalence relation R © §XS, an equivalence class of x € S with respect to R is defined by
[x]g = {y € S|xRy}. A set viewed as an equivalence class is called a rough set.

(c) Approximation by a rough set

Given an equivalence relation R € SXS, for any X € S, the lower approximation of X with respect to
R, denoted by R, (X), is defined as R,(X) = {x € S|[x]z € X}, and the upper approximation of X
with respect to R, denoted by R*(X), is defined as R*(X) = {x € S|[x]z N X # 0}.

(d) Rough set lattice

Given two kinds of equivalence relations R € SxS and K € SxS, L = {X < S|R*(K.(X)) = X} can
be verified to be a lattice and is called a rough set lattice. In a rough set lattice, any element is a set,
and the order relation is defined by inclusion (S). Meet and join are defined as follows: For any
X,YSSXAY=R(K.(XnY))and X VY = R*(K.(X UY)).

Note: In the text of this paper, a relation R between a set of one equivalence class and a set of other
equivalence classes is given, and the upper and lower approximations are replaced by H* and D,,
respectively, for the sake of convenience.

Appendix C (Algorithmic representations for excess Bayesian inference)

//H = {hll h2! ---'hN}PD = {dl' dz, ""dN}
/IM* = {M; = (hy,dq),M, = (hprdp)’ oy My = (hy, dy), }
for(k =1L k<m; k++){

// excess Bayesian inference with respect to a datum
forGj=1,j<N;j++){
sum = 0;
for(i =mMy; i <My, — 1, i++){

sum = sum + P(d;, h;);

}
for(i =mMy; i <My, — 1, i++){

PP(d;, hj) = P(d;, h;)/sum;
h
h
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for(i =nmMy; i <nMp,,— 1, i++){
forG=1,j<N;j++){

} P(duty) = PP(dy hy);
}

// excess Bayesian inference with respect to a hypothesis

fori=1Li<N;i++){
sum = 0;
for(j =My; j S tMyyq — 15 j+ +) 4

sum = sum+ P(d;, h

}

for(j =My; j S tMyyq — 15 j+ +) 4

l’]

PP(dl, ]) P(dl, ])/sum

b
b

for(j =nMy; j < Mgy — 1, j++4) ¢
fori=1Li<N;i++){

P(di by) = PP(di, by);
}
}
/I Amplifying the effect

for(i=nMy; i <nMp,,— 1 i++){
for(j =nM;j<nMy,,—1;, j++){

P(d, 1) = P(dily) * P(duly);

}
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