

Table 1.

Therapeutic platform	Agent	Targeting effects	Reference
Natural compounds	Withaferin A (Wi-A; withanolides from Ashwagandha)	 Induction of apoptosis Inhibition of Notch-1 signaling Downregulation of serine-threonine kinase (Akt)/nuclear factor (NF)-kB/B-cell lymphoma (Bcl)-2 pathways Strong cytotoxicity to both cancer and normal cells Potent anti-migratory, anti-invasive, and anti-angiogenic activities 	[27-33]
	Withanone (Wi-N; withanolides from Ashwagandha)	 Interaction with p53, hmot-2, p21WAF1, and nuclear factor-erythroid 2-related factor 2 (Nrf2) (i-Extract) Increased selective killing of cancer cells 	[33, 37-40]
	CAPE (Ingredient of New Zealand honeybee propolis)	 Disruption of the mortalin–p53 complex Increased translocation and activation of p53 in the nucleus Enhancement of anti-tumor and anti-metastasis (γCD-complexed CAPE) 	[41, 42, 44]
	Artepillin C (Ingredient of Brazilian green propolis)	 Abrogation of mortalin–p53 complexes, activation of p53 Increased growth arrest of cancer cells Increased cytotoxicity in vitro (green propolis-supercritical extract (GPSE) - conjugated with γCD) Potent anticancer activity (GPSE-conjugated with γCD) 	[45]
	Veratridine (VTD) (Alkaloid derived from Liliaceae plants)	 Increased transactivation of cytoplasmic UBX domain protein 2A (UBXN2A) Inhibition of motalin Increased tumor-specific toxicity Induction of cancer chemosensitivity 	[23]
	Embelin (natural quinone from <i>Embelia ribes</i>)	 Induction of cancer chemosensitivity Increased nuclear translocation of p53 Abolished activity of the mortalin-p53 complex Downregulation of growth factor expression and metastatic signaling pathway Inhibition of cancer cell growth 	[46]
	Fucoxanthin (found in marine organisms)	 Suppression of the transcriptional activity of mortalin Activation of p53 function in cancer cells Decreased cancer cell proliferation and survival Cancer cell-specific killing 	[47]

		- Decreased migration and invasion of cancer cells	
Chemical compounds	MKT-077 (C ₂₁ H ₂₂ ClN ₃ OS ₂)	 Elimination of mortalin-p53 interactions (no alteration of mortalin expression) Binding to mot-2 and abrogation of its interaction with p53 Enhancement of anti-tumor activity Overcoming the limited efficacy of photodynamic therapy Induction of apoptosis or necrosis Decreased drug resistance of cancer cells 	[48-52]
	Mortaparib	 Abrogation of cancer cell-specific mortalin–p53 interactions Induction of growth arrest/apoptosis signaling Inhibition of cancer cell migration, metastasis, and angiogenesis <i>in vitro</i> Potent anti-tumor and anti-metastatic effects A first dual inhibitor of mortalin and poly(ADP-ribose) polymerase 1 (PARP-1) 	[53]
	Mortaparib ^{Plus}	 Prevention of mortalin–p53 interaction Induction of growth arrest and apoptosis Induction of cancer cell death via multiple mechanisms 	[54]
	SHetA2	 Disruption of mortalin–p53 complexes in ovarian cancer cells Induction of apoptosis in cancer cells Tumor growth inhibition in orthotopic ovarian tumor model (combination with PRIMA-1MET) 	[55-59]
Peptide	SMR of Nef	 Disruption of the interaction of Nef with mortalin Antagonization of the functions of mortalin (SMR-CLU) Decrease in breast cancer cell metastasis (SMT-CLU) Inhibition of growth (PEG-SMRwt-CLU) Cell cycle arrest at G₂/M phase (PEG-SMRwt-CLU) Increased sensitivity to cisplatin and paclitaxel (SMRwt) 	[60, 61]
	Mot-P2 or Mot-P7	 Antibody-mediated and complement-dependent cell killing Increased plasma membrane perforation and mitochondrial inner membrane depolarization Decrease in ATP levels Increased cell death on combination with rituximab 	[62]
Antibody	i-mot Ab	 Enhanced transgene expression in mortalin-positive cells (i-mot Ab/PEI complex) Increased cellular uptake of CAPE (CAPE-MotAb) Stronger growth arrest/apoptosis (CAPE-MotAb) Downregulation of the expression levels of proteins involved in cell migration (CAPE-MotAb) 	[64, 66]

		- Significant suppression of tumor growth (CAPE-MotAb)	
Nucleic acid	shRNA against motalin	 Induction of mutant p53-mediated tumor-specific apoptosis Increased responsiveness of cancer cells to chemotherapeutic drugs Reduction in cancer cell stemness Downregulation of the expression levels of ATP binding cassette subfamily G member 2 (ABCG2), POU class 5 homeobox 1 (POU5F1/OCT-4), CD133, aldehyde dehydrogenase 1 (ALDH1), CD9, ATP binding cassette subfamily C member 1 (ABCC1/MRP1), and connexin Enhanced cancer cell-killing and anti-tumor effects on cancer cells (mot-Adon) Enhanced apoptosis (mediated by reactivation of p53) (mot-Adon) Suppression of microvessel formation (mot-Adon) 	[9, 16, 67, 70- 75]

