## **Supplementary Material**

Table S1: All variables used in each sepsis group for the final developed model

| Sepsis Groups | All Features Selected for Logistic Regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abdominal     | Age, Albumin Var, Asthma, Atrial Fibrillation, Avg Albumin, Avg Creatinine, Avg<br>FiO2, Avg GCS Total, Avg Glucose, Avg Heart Rate, Avg Hematocrit, Avg Lymphs,<br>Avg MAP, Avg PaCO2, Avg PaO2, Avg PH, Avg Platelets, Avg Resp Rate, Avg<br>Sodium, Avg Temp °C, Avg Total Bilirubin, Avg Urine, Avg WBC, BUN Var, CABG,<br>Cancer, Creatinine Var, CTD, Dementia, Dobutamine, Dopamine, Endocrine,<br>FiO2 Var, GCS Total Var, Gender (Male), Glucose Var, Heart Rate Var, Hematocrit<br>Var, Hemiplegia, Hypertension, Hypothyroidism, Infectious Diseases, Intubated,<br>Lymphs Var, MAP Var, Mild Liver Disease, Neurologic, Norepinephrine,<br>Oncology, PaCO2 Var, PaO2 Var, Phenylephrine, Platelets Var, Pulmonary, Renal<br>Disease, Resp Rate Var, Respiratory Failure, SaO2 Var, Seizures, Severe Liver<br>Disease, Sodium Var, Temp °C Var, Uncomplicated DM, Unit Stay Type (Admit),<br>Unit Stay Type (Other/Stepdown/Transfer), Unit Stay Type (Readmit), Unit Type<br>(SICU), Urine Var, Vasopressin, WBC Var.                                                                                                                                        |
| Pulmonary     | Age, Atrial Fibrillation, Avg Albumin, Avg BUN, Avg FiO2, Avg GCS Total, Avg<br>Heart Rate, Avg MAP, Avg PaO2. Avg SaO2. Avg Temp °C, Avg Total Bilirubin, Avg<br>Urine, Cancer, Cardiovascular, CHF, Dementia, GCS Total Var, Gender (Male),<br>Heart Rate Var, Hypothyroidism, Intubated, Norepinephrine, Oncology, PaCO2<br>Var, Phenylephrine, Platelets Var, Renal Disease, Resp Rate Var, Respiratory<br>Failure, SaO2 Var, Total Bilirubin Var, Unit Stay Type (Admit), Unit Stay Type<br>(Readmit), Unit Type (Med-Surg ICU), Unit Type (MICU), Vasopressin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Renal/UTI     | Age, Albumin Var, Asthma, Atrial Fibrillation, Avg Albumin, Avg BUN, Avg<br>Creatinine, Avg FiO2, Avg GCS Total, Avg Glucose, Avg Heart Rate, Avg<br>Hematocrit, Avg Lymphs, Avg MAP, Avg PaCO2, Avg PaO2, Avg PH, Avg Platelets,<br>Avg Resp Rate, Avg SaO2, Avg Sodium, Avg Temp °C, Avg Total Bilirubin, Avg<br>Urine, Avg WBC, BUN Var, CABG, Cancer, Cardiovascular, CHF, COPD, Creatinine<br>Var, CTD, Dementia, Dobutamine, Dopamine, Endocrine, Epinephrine, FiO2 Var,<br>Gastrointestinal, GCS Total Var, Gender (Male), Glucose Var, Heart Rate Var,<br>Hematocrit Var, Hemiplegia, Hypertension, Hypothyroidism, Infectious<br>Diseases, Intubated, Lymphs Var, MAP Var, Mild Liver Disease, Myocardial<br>Infarction, Neurologic, Norepinephrine, Platelets Var, Pulmonary, PVD, Renal,<br>Renal Disease, Resp Rate Var, Respiratory Failure, SaO2 Var, Seizures, Severe<br>Liver Disease, Sodium Var, Temp °C Var, Total Bilirubin Var, Uncomplicated DM,<br>Unit Stay Type (Admit), Unit Stay Type Other/Stepdown/Transfer), Unit Stay<br>Type (Readmit),Unit Type (Med-Surg ICU), Unit Type (MICU), Unit Type (SICU),<br>Urine Var, Vasopressin, WBC Var. |



**Figure S1:** The example displays a 2x3-fold nested cross-validation.  $D_{train}$ ,  $D_{val}$  and  $D_{test}$  represent a proportion of the training, validation and test data used in each iteration.

## Nested cross-validation

Nested cross-validation is commonly used to train a model in which hyperparameters also need to be optimised. In our case, the implementation of a forward sequential search algorithm for feature selection. In each fold of the outer cross-validation, the hyperparameters of the model are tuned independently to minimise an inner cross-validation estimate of the performance. This eliminates the bias introduced by the inner cross-validation procedure as the test data in each iteration of the outer cross-validation has not been used to optimise the performance of the model in any way, and may, therefore, provide a more reliable criterion for selecting the best model [1].

 J. Wainer and G. Cawley, 'Nested cross-validation when selecting classifiers is overzealous for most practical applications', *Expert Syst. Appl.*, vol. 182, p. 115222, Nov. 2021, doi: 10.1016/J.ESWA.2021.115222.