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1 Additional table 

TABLE 1 | Sequence reference for sequenced sequences. 

Serial number Index number Serial number Index number 

1 12554019835070 13 848763086260 

2 7228970999289 14 4888818944578 

3 121558437221 15 15444627855172 

4 10492258180879 16 16151735755247 

5 10427167494980 17 12832049053867 

6 9862216397547 18 16456554095806 

7 1293095265576 19 953756111131 

8 12775796364059 20 4861352363851 

9 3349027052538 21 16153412389812 

10 1478694400385 22 1480659235565 

11 4936261283987 23 14677954247995 

12 8512915544879 24 7091029102363 

Too many sequences, see the full version: https://github.com/wangpenghaoAA/Reference-order. 

https://github.com/wangpenghaoAA/Reference-order
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2 Additional information 

⒈ Seeds are used in both this scheme and the fountain encoding experiment. What is the difference 

between the seeds used in the two schemes?  

In fact, the seeds used by the two schemes are essentially the same for ease of decoding. But the seeds 

in the fountain encoding experiments [1] had another role. That is feature recognition for sequences, 

but at the same time exposes a problem. When the DNA sequences of the seeds of the two sequences 

are too similar, it is easy to cause sequence decoding errors. And fountain encoding is to XOR between 

N groups of data to generate DNA sequences that meet the constraints. When a sequence is decoded 

incorrectly or lost, it is bound to result in the loss of the entire data. As shown in Figure 1: 

 

 

FIGURE1|Schematic diagram of the fountain encoding experiment. 

In our scheme, we divide the data into N groups and then perform fountain encoding on sub-segments 

of each group of data. Therefore, the N groups are independent of each other and do not affect each 

other. When each set of data is fountain encoded, a large number of seeds and XOR data are converted 

into DNA fragments, so each set of data will generate a large number of DNA fragments that meet the 

constraints. From the generated large number of DNA fragments that meet the constraints, we select 

the index DNA fragments of this set of data, and 7 DNA fragments that can be decoded with the index. 

After similarity search, we will select DNA fragments with low similarity as indexes, so we can avoid 

errors caused by the high similarity of seeds in the fountain encoding experiment. In our scheme the 

seed is used in decoding each set of data without feature recognition. As shown in Figure 2: 

 

FIGURE2|Schematic diagram of an encoding scheme for hidden addressing. 

⒉ Hidden addressing details： 

Hidden addressing is not to discard the index directly, but to replace it with data block. In other words, 

the index exists in the DNA sequence in the form of data block, and the data block that replaces the 

index has to assume the role of the data block and the role of the index in the DNA sequence. We have 

done two things about your question about hiding addressing details: ① as shown in the following 

figure 3: 
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FIGURE 3|Schematic of hidden addressing 

② Pseudocode for addressing using data hiding: 

Algorithm 1. Use data instead of addressing information 

1 Each set of data corresponding to a large number of DNA fragments; 

2 for  N sets of DNA fragments with enough data 

3 select a representative DNA fragment for each set of data; 

4 If repeats of DNA fragments selected in the i-th and j-th groups 

of data (where N> i > j) 

5 select another DNA fragment from the j-th group of data; 

end 

6 If the high similarity of the DNA fragments selected in the i-th 

and j-th data sets (where N > i > j) 

7        select another DNA fragment from the j-th group of data; 

8 end 

9 end 

10 return  record all selected indices representing the set of data; 

11 for  N sets of data, each set of data has enough DNA fragments 

12 select 7 DNA fragments from each set of data; 

13 end 

⒊ The net information density can theoretically be improved after hidden addressing, but in fact, the 

net information density does not change significantly. 
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In the fountain encoding experiment[1], the author failed to achieve random reading of data, and 

directly XORed N groups of data. If a sequence loss is encountered, it may cause the file to fail to 

decode. In our encoding scheme, not only hidden addressing is achieved, but also the data sets are 

independent of each other, allowing the implementation of random-access functions. Each group of 

data is independent of each other and does not affect each other. When one sequence is lost, the 

decoding of other sequences is still unaffected and can be less lost within the maximum range. 

Although data is used instead of indexes to reduce redundancy in this paper, higher encoding density 

is obtained relative to other storage systems that implement random access functions. Although the 8 

seeds added by the fountain encoding for each set of data during the encoding process will result in a 

lower storage density (1.48nt/bit) than that of the fountain encoding experiment (1.57nt/bit)[1], it is 

worth mentioning Erich's encoding scheme random-access is not implemented. Therefore, we believe 

that it is fair to compare the indicators of storage systems that implement the same function, so the 

relevant comparisons are made below. 

For example, in 2018, Organick[2] designed a large primer library that could individually read a 

particular file stored in DNA. Experiments demonstrated a feasible large-scale DNA data storage and 

retrieval system that utilizes the primer library to achieve random access to data. In 2019, Tomek[3] 

designed and implemented a nested file address system that increased the theoretical maximum 

capacity of DNA storage systems by five orders of magnitude. This advancement enables the 

development and future expansion of DNA-based data storage systems with modern capacity and file 

access.  

This is a representative scheme that can realize random reading of files at present. The comparison 

results are shown in Table 2: 

TABLE 2|Net information density comparison of random-access functions. 

Method Net information density Random access Data size 

Erlich[1] 1.57 No 2.14MB 

Organick[2] 1.10 Yes 200.2MB/32KB 

Tomek[3] 0.66 Yes 94.3KB 

Our work 1.48 Yes 10.1MB/40KB 
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