
Supplementary Material

1 REALIZATION OF THE ROBOT PROGRAM

1.1 Objectives and constraints

Table S1 contains the designed objectives and constraints. The first three rows represent objective
functions and the other rows constraints. The objective AlignDirection minimizes the angle difference
between the robot heading h⃗ and a direction vector d⃗ as seen on the left of Fig. S1. The variable h⃗(θ+ω · t)
represents a future robot heading after applying a suggested input ω for a duration of t seconds. Here the t
is related to a single iteration of the program. The objective MaximizeTranslationalSpeed maximizes the
velocity v. The objective AvoidArea minimizes the overlap between an avoid area and a predicted robot
footprint on which an input v and ω is applied, that is, SA robot input. This is visualized in the second
column of Fig. S1 and this makes sure that the robot moves away from avoid areas. The calculations are
done via a postgis query. The two speed limit constraints constrain the input of the robot as visualized in
the third column of Fig. S1. The MaxAngleDiff constraint restricts the difference of angle between the
heading h⃗ and d⃗ to not exceed a limit as seen in the fourth column of Fig. S1. The NoEnterArea constraint
makes sure that the predicted robot footprint will never intersect with a no-enter area.

AlignDirection

�h

�d

AvoidArea

overlap
area

SpeedLimitTrans
SpeedLimitRot

avoid

v

ω

NoEnterArea

overlap
no enter

MaxAngleDiff

�h

�d

∆θ

Figure S1. Additional visualizations to aid in understanding the calculations involved in the designed
objectives and constraints. The related objectives and constraints are explicitly mentioned below the figure.

1

Supplementary Material

Table S1. Descriptions of the designed objective functions and (in)equality constraints. The first column describes the function id, the second column the input
type, the third column any parameters that can be influenced by the application developer, the fourth column any replacement constraints with in brackets the
parameterization, and the fifth column the equation or Spatial Query that is checked.

function id input para- repla equation/SQ
type meter cement

AlignDirection ω d⃗ MaxAngle minω(arccos(
h⃗(θ+ω·t)
|⃗h(θ+ω·t)|

· d⃗

|d⃗|
))

Diff
(θlimit = 60)

Maximize v N.A. N.A. minv −v
Translational

Speed
AvoidArea ω N.A. N.A. minω Area(Intersects(

N.A. SA Robot Input, BA avoid))
SpeedLimit N.A. vlimit N.A. v-vlimit ≤ 0

Trans
SpeedLimit N.A. ωlimit N.A. ω-ωlimit ≤ 0

Rot
NoSpeedTrans N.A. N.A. N.A. v = 0
NoSpeedRot N.A. N.A. N.A. ω = 0

MaxAngle N.A. θlimit N.A. arccos(h⃗(θ+ω·t)
|⃗h(θ+ω·t)|

· d⃗

|d⃗|
))− θlimit ≤ 0

Diff
NoEnter N.A. N.A. N.A. Intersects(SA Robot Input, BA NoEnter)

Area = False

1.2 Elementary Behavior and control specifications

The designed control specifications of the EBs are given as
EB_stop_control = {

objectives: [],
constraints: [NoSpeedTrans, NoSpeedRot]

},
EB_drive_control = {

objectives: [AlignDirection, MaximizeTranslationalSpeed],
constraints: [SpeedLimitTrans, SpeedLimitRot]

},
EB_avoid_control = {
objectives: [AvoidArea],
constraints: [SpeedLimitTrans, SpeedLimitRot]
},
EB_noenter_control = {

objectives: [],
constraints: [NoEnterArea]

}

The stop control is designed to stop all control inputs of the robot. The drive control is inspired from a
traffic lane where a direction needs to be followed with speed limits. The avoid control wants to evade
avoid areas where the speed limits are added to reduce the speed as these avoid areas are typically created
as a precautionary measure for collision. The no-enter control does not permit the robot to ever enter a
no-enter area.

1.3 COP solver

Algorithm 1 explains the procedure to obtain the optimal input u⃗. We will clarify this procedure via
Fig. S2 in which a robot is depicted with its five predicted positions after executing discretized inputs u1 =
(v=0.1, ω=40), u2 = (v=0.1, ω=20), u3 = (v=0.1, ω=0), u4 = (v=0.1, ω=-20), u5 = (v=0.1, ω=-40). We will
assume that the BAs generate a COP with objectives and constraints:

2

objective_1 = {
function_id: MaximizeSpeed,
parameter_type: [],
parameter_value: [],
intention_type: Progress,
constraint_replacement_fid: none,
constraint_replacement_par_type: [],
constraint_replacement_par_value: [],
input_type: translational velocity

},
objective_2 = {

function_id: AvoidArea,
parameter_type: [],
parameter_value: [],
intention_type: Safety,
constraint_replacement_fid: none,
constraint_replacement_par_type: [],
constraint_replacement_par_value: [],
input_type: rotational velocity

},
constraint_1 = {

function_id: SpeedLimitTrans,
parameter_type: [’translational speed limit’],
parameter_value: [0.1],
intention_type: Safety

}
constraint_2 = {

function_id: SpeedLimitRot,
parameter_type: [’rotational speed limit’],
parameter_value: [40],
intention_type: Safety}

constraint_3 = {
function_id: NoEnterArea,
parameter_type: [],
parameter_value: [],
intention_type: NoDamage}

constraint_4 = {
function_id: MaxAngleDiff,
parameter_type: [’angle_diff’],
parameter_value: [60],
intention_type: Progress

}

At line 4 it is checked whether an input u can be found that satisfies all constraints. Immediately it can
be observed that inputs u2 - u5 violate constraint 3. Input u1 does not violate constraint 3 but
does violate constraint 4, such that none of our inputs are valid. We then continue at line 5-6 and
check whether all our remaining constraints are of the highest intention. Considering we rank intention
as NoDamage>Safety>Progress, then we can deem that not all our remaining constraint are of intention
NoDamage. We then continue at line 9 and temporarily dismiss the constraints belonging to the most
inferior intention Progress, that is, constraint 4. ’Temporarily’ implies only to be valid for the current
program loop, where this dismissal is forgotten at the next program loop. We then start again at line 4
and notice that input u1 is now valid and execute it. This constraint dismissal mechanism is added for
the situation in Fig. S2 and Fig. S3. The latter is a lane changing mechanism which frequently occurs
in the real world experiments at Sec. 5.2.3 in the main text. Whenever a robot transitions from lanes as
from Fig. S3(A) to Fig. S3(B), it will often have a heading configuration that violates the MaxAngleDiff
constraint. By dismissing it temporarily, we allow it to turn its heading towards the direction vector of the
new lane.

1.4 Monitor

We have designed the following monitors which check the satisfaction of an FSQ as

monitor_BA_stop = { FSQ: Contains, first_argument: BA_stop, second_argument: SA_robot }

monitor_BA_drive = { FSQ: Intersects, first_argument: BA_drive, second_argument: SA_robot }

monitor_BA_avoid_1 = { FSQ: Intersects, first_argument: BA_avoid, second_argument: SA_robot }
monitor_BA_avoid_2 = { FSQ: Intersects, first_argument: BA_avoid, second_argument: SA_robot_forward}

monitor_BA_noenter = { FSQ: Intersects, first_argument: BA_noenter, second_argument: SA_robot_around
}

Frontiers 3

Supplementary Material

v

ω

v = 0.1

ω = 0

v = 0.1

ω = 20

v = 0.1

ω = -20

∆θ = 80

Figure S2. A mobile robot is depicted in the middle where its predicted footprints (pink squares) are
visualized after applying the suggested control input. Four Behavior Areas are present: BA 0 is a drive
forward area, BA 1 and BA 2 a no enter area, and BA 3 an avoid area.

A stop area is only relevant when the current geometric area of the robot, that is SA robot, is contained
within it as seen in the first column in Fig. S4. A drive forward area requires an intersection with the current
robot as seen in the second column of Fig. S4, as other obstacles on this area may push the robot towards
the edge. An avoid area requires either the intersection with the current robot or the intersection of a robot
that has moved forward, that is, SA robot forward, visualized in third column of Fig. S3. In this work,
we consider SA robot forward to be the geometric area of the robot that traversed in its heading h⃗ for
two meters as this seemed a reasonable balance between not reacting too early and not too late. Note that
taking too high values may result in the robot missing avoid areas. A no enter area is relevant when the

4

(A) (B)

Figure S3. An example clarifying that an instantaneous lane change, as from (A) to (B), would result in a
big angle difference between the robot (pink square) its current heading and the new lane direction vector.

Algorithm 1 Procedure of the implemented COP solver
1: procedure SOLVECOP
2: //solve generated COP for most amount intentions
3: while optimal input u not found do
4: - obtain input u from COP-solver that satisfies all the constraints in ’list constraints’
5: if no input u can be found that satisfies all constraints then
6: if all constraints in ’list constraints’ have highest intention then
7: - optimal input u = 0⃗
8: else
9: - remove the constraints belonging to the most inferior intention of ’list constraints’

10: end if
11: else
12: - optimal input u is the one that gives best objective score
13: end if
14: end while
15: end procedure

area around the robot intersects with it, that is, SA robot around. A circle with a radius of five meters is
chosen to guarantee that all nearby no-enter areas are taken into consideration. It is necessary to also take
the no-enter areas behind the robot into consideration as the robot could rotate into it with its back.

1.5 Semantic Behaviors

The Semantic Behaviors (SBs) are described in Tab. S2. The first column gives a short description, the
second column the transformative Spatial Query (TSQ) with parameters in brackets, the third column the
filtered SA or SA on which the TSQ is applied, and the fourth column the Elementary Behavior (EB), with
its parameterization in brackets, and intention knowledge.

Frontiers 5

Supplementary Material

robot contained in
stop area

robot intersects
avoid area

forward robot
intersects avoid area

2

forward
robot

robot intersects
drive area

5

circle around robot
intersects no enter area

Figure S4. Visualizations depicting situations that would satisfy the monitor. The robot is visualized as a
pink square with its heading depicted by the black arrow. The first column represent the satisfaction of the
stop area, the second column the drive area, the third column the avoid area, and the fourth column the no
enter area.

1.5.1 Non-continuous SBs

These SBs will only need to be solved at certain time instances and designs the static part of the behavior
map. SBs 1-10 belong to this category. The first SB describes when the robot has reached its destination.
The second SB chooses the lane that contains the goal and also intersects with the robot current position.
One of the lanes L1-L7 will then be chosen at the bottom left of Fig. 10 in the main text. Each lane can be
traversed in two directions, and the direction vector parameter in the fourth column is then one of those two
directions that will direct the robot towards its goal. A translational speed limit of 0.7 m/s is chosen for the
simulation and 0.5 m/s for the real world experiments. The relative higher speed limit for simulation is due
to no risk of physically damaging the robot. The low speed limit overal is due to 1) the risk of physically
damaging the robot, and/or 2) practical reasons to give the program more time to process the data as the
frequency of the program varied between 1-10 Hz. The latter can be explained due to non-optimal coding
and/or a python implementation with the shapely package performing the Transformative or Filtering
Spatial Queries not fast enough. This could be problematic as the robot may displace a big distance before
the monitor in the next program loop can check the relevant Behavior Areas at Alg. 3 in the main text. The
robot may not react properly to the behavior map and in the worst case enter a no-enter area. The rotational
speed limit is set at 40 deg/s for similar reasons of allowing the program to check the behavior map timely.

SB3-SB5 are designed to avoid being near hard objects and the Functional Area (FA) that may contain
objects within it. We only generate the BAs of objects that are within the lane to prevent the bookkeeping
of too much unrelated BAs. The geometric areas of walls and pillars are buffered with the postgis query
’ST Buffer’. For walls a buffer value of 0.35 is chosen for the simulations and 0.6 for the real world
experiments. For pillars a buffer value of 0.7 for simulations and 0.85 for real world experiments. The
reason for the higher real-world value is due to the risk of physically damaging the robot. The overal low
buffer value is chosen as otherwise the avoid area became too big such that the robot will often take those
constraints of the avoid area into account as on the left of Fig. S5. As avoid areas are typically related to
lower speed limits, the robot will drive unecessarily slow. This is one of the main tuning method of those
avoid areas, that is, to choose a buffer value that would not unecessarily restrict the robots behavior in
terms of velocity or position. The difference between pillars and walls buffer values is explained as the
pillars can be present on any position in the lane whereas walls are only present at the sides of the lane. The

6

lowered translational speed of 0.2 m/s is due to us wanting the robot to slow down near those hard objects.
The rotational speed was chosen as 20 deg/s in simulation and 40 deg/s in in real world experiments. This
is due to us wanting to clarify the slow down behavior in simulations.

(A) too big avoid areas (B) too big length AreaInDirection

Figure S5. Visualization of too big avoid areas in (A) and too long avoid areas in (B). The black squares
are walls and the black circles are pillars. The robot is visualized as a pink square with the direction
implying its heading.

SB6 and SB7 are added as a premature measure to avoid these areas in case the avoid monitor does not
look far enough ahead. We hence added a 3 meter avoid area on those objects with a direction vector that
is opposite to the one of SB2 via a custom python function. These 3 meters showed proper behavior of
precautiously avoiding the object. Defining bigger length values could result in the robot to not optimally
use its space, e.g., as in the right of Fig. S5 where the robot would rather be more left to avoid the first
pillar. SB8 is added to make sure that the robot stays in the lane. We create an avoid area around the lane
with a buffer value of 2 meter via postgis queries ’ST Buffer’ and ’ST difference’. It is not problematic for
the robot to be on the edge of the lane, such that we do not impose reduced translational and rotational
speed limits. SB9 and SB10 are added to prevent collisions with the walls and pillars.

1.5.2 Continuous SBs

These SBs will result in Behavior Areas (BAs) that need to be removed from the behavior map and are
updated at every program loop as done via Alg. 2 in the main text. They are related to the robot perception,
where the robot perception updates the semantic map at every loop of the program. This update occurs
before Alg. 1 of the main text is activated. By updating the behavior map real-time, one can allow the robot
to react to unforeseen circumstances, e.g., dynamic objects. SB11 and SB12 for example allows the robot
to react to humans that are present on its lane. The resulting BAs will move according to the observed
motion of the human. An example of the resulting BA is seen in Fig. 14 in the main text. The parameters
that characterizes this shape is tuned by observing the robot its behavior whenever a human-robot passing

Frontiers 7

Supplementary Material

interaction occurs. We wanted the robot to react on time and also quickly choose the left or right side of
the human, hence the long point shape. The width is 1) to make sure that the robot will stay far enough
away from the human, and 2) to deal with uncertainties of the geometric position of the human detection
algorithm. In this case a width is chosen that is a bit bigger than the human width as it may otherwise
restrict the robot its position too much. The no-enter area is a smaller shape of the avoid area and more
tailored to the geometric area occupied by the human. Note that we always assume any detected human
to move away from the goal and towards the robot, as indicated by the direction parameter ”away from
goal”. SB13 is introduced to deal with map uncertainties. It can occur that objects are not priorly put on the
semantic map and can neither be detected via a camera. In this case we make use of the LRF, where we
retrieve the coordinates of the laser points and check whether they are contained within a no-enter area on
the behavior map. If no no-enter area can be found, then we classify the laser point as an unknown point
’U LRF’. We then add these unknown points as new no-enter areas on the behavior map.

8

Table S2. Detailed description of the designed Semantic Behaviors. The first column describes the SB. The second column the Transformative Spatial Query
with in brackets any optional parameters (Figure 4 in main text). The third column the argument on which the TSQ is applied. The fourth column the control
knowledge where the first argument refers to the Elementary Behavior, with in brackets any optimal parameters (objectives/constraints of EB control data
structures and Table S1), and the second argument to the intention.

description TSQ FSQ/SA control knowledge
1. stop at goal EqualArea[] Goal 1. stop[]

2. CompleteTask
2. drive to goal EqualArea[] Intersects(Contains(1. drive [vlimit = 0.7/0.5,

on lane Lane,Goal) ωlimit = 40,
,Robot) = LGR direction = to goal]

2. Progress
3. avoid walls on BufferArea Intersects(Wall, 1. avoid [vlimit = 0.2 m/s,

lane to goal [buffer = 0.35/0.6] LGR) ωlimit = 20/40]
2. Safety

4. avoid pillars on BufferArea Intersects(Wall, 1. avoid [vlimit = 0.2 m/s,
lane to goal [buffer = 0.7/0.85] LGR) ωlimit = 20/40]

2. Safety
5. avoid Functional EqualArea Intersects(FA, 1. avoid [vlimit = 0.2 m/s,

Area (FA) on [] LGR) ωlimit = 20/40]
lane to goal 2. Safety

6. avoid driving into AreaInDirection Intersects(Pillar, 1. avoid [vlimit = 0.2 m/s,
pillars [length = 3, LGR) ωlimit = 20/40]

direction = 2. Safety
away goal]

7. avoid driving into AreaInDirection Intersects(FA, 1. avoid [vlimit = 0.2 m/s,
FA [length = 3, LGR) ωlimit = 20/40]

direction = 2. Safety
away goal]

8. stay in AroundArea LGR 1. avoid [vlimit = 0.7/0.5 m/s,
lane to goal [buffer = 2] ωlimit = 40

2. Progress
9. No Collision EqualArea Intersects(Wall, 1. no-enter []
Walls in lane [] LGR) 2. NoDamage

10. No Collision EqualArea Intersects(Pillar, 1. no-enter []
Pillars in lane [] LGR) 2. NoDamage

11. pass humans HumanInDirection Intersects(human, 1. avoid [vlimit = 0.2 m/s,
respecting comfort [l1 = 1, l2 = 4, LGR) ωlimit = 20/40]

distance l3 = 4, width = 1, 2. Safety
direction = away goal]

12. No Collision HumanInDirection Intersects(human, 1. no-enter []
human in lane [l1=0.3, l2 = 0.3, LGR) 2. NoDamage

l3 =0.3, width = 0.5,
direction = away goal]

13. No Collision EqualArea Intersects(U LRF 1. no-enter []
unknown [] , LGR) 2. NoDamage

laserpoints

Frontiers 9

	Realization of the robot program
	Objectives and constraints
	Elementary Behavior and control specifications
	COP solver
	Monitor
	Semantic Behaviors
	Non-continuous SBs
	Continuous SBs

