
Appendix A: Secondary-centered
Jacobi integral

In the following, Eq 3 will be derived from Eq 1, i.e. the Jacobi

integral will be expressed in terms of Keplerian elements around

the secondary body. In a first step, the transformation from

barycentric, synodic coordinates x, y, z to secondary-centered,

inertial, Cartesian coordinates, ξ, η, ζ has to be performed. The

synodic frame rotates with angular velocity n with respect to the

inertial frame. With reference to Figure 1, the coordinates x, y, z

are computed in the synodic, barycentric frame, whereas ξ, η, ζ

are computed in the inertial frame, centered inm2. Therefore, the

transformation can be written as follows:
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where we have abbreviated c := cos nt and s := sin nt. First, the

kinetic term in Eq 1 shall be transformed. Taking the time

derivative of Eq 7 yields:
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This allows writing the velocity terms of the Jacobi integral as

follows:

_x2 + _y2 + _z2 � −nsξ + ncη + c _ξ + s _η( )2
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In the last line some straightforward algebra has been skipped.

Next, we rewrite the centrifugal potential terms of Eq 1 by

considering the expression:

1 − μ( )r21 + μr22 � 1 − μ( ) x + μ( )2 + y2 + z2[ ]
+μ x − 1 − μ( )( )2 + y2 + z2[ ]

� x2 + y2 + z2 + μ 1 − μ( ) (10)

where Eq 2 has been used. Considering that z = ζ, Eq 10 can be

rewritten as:

x2 + y2 � 1 − μ( )r21 + μr22 − ζ2 − μ 1 − μ( ) (11)

Inserting Eqs. 9, 11 into Eq 1 and using ξ2 + η2 + ζ2 � r22, one

obtains the Jacobi integral in secondary-centered, inertial,

Cartesian coordinates:
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In a second step, the Cartesian coordinates are replaced by

Keplerian elements, as, es and is around the secondary body

using definitions of the angular momentum and energy in the

two-body problem:

ξ _η − η _ξ � hz �
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Inserting these into Eq 12 yields:
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which is identical to Eq 3. The dependence of the Jacobi integral

on r1 and r2 cannot be removed, but these parameters can be

approximated by constant values in the vicinity of the secondary,

e.g. by choosing r1 = 1 and r2 = 0.

Appendix B: Primary-centered Jacobi
integral

In the following, Eq 4 will be derived, i.e. an expression of

the Jacobi integral as a function of primary-centered Keplerian

elements will be computed. The derivation is completely

analogous to the previous section and an intermediate result

can readily be obtained by simply performing the

transformation

μ ↔ 1 − μ
r1 ↔ r2
as → ap
es → ep
is → ip

(16)

on Eq 15. This yields:

CJ � n2μ r22 − r21( ) + 2μ
r2
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(17)

The usefulness of Eq 17 is, however, limited because r1 and r2
cannot be simply approximated by a constant value, as

previously, for the orbits under consideration. Therefore, some

additional approximations need to be made. The sum of the first

and last term in Eq 17 can be transcribed using Eq 10:

μ r22 − r21( ) − μ 1 − μ( ) � x2 + y2 + z2 − r21
� −2xμ − μ2

≈ 0
(18)

where in the second line, Eq 2 has been used. The third line

assumes μ≪ 1 and x ≲ 1. Moreover, the second term in Eq 17 can

be neglected compared to the third term because μ ≪ 1. These

approximations are valid if the secondary is much lighter than
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the primary and if the spacecraft is not too close to the secondary.

Overall, Eq 17 becomes:

CJ ≈
1 − μ

ap
+ 2n

���������������
1 − μ( )ap 1 − e2p( )√

cos ip (19)

which is identical to the first line of Eq 4.

In order to obtain an expression for the Jacobi integral as a

function on the flyby infinite velocity (at the secondary body),

consider the relationship between the infinite velocity and the

velocity vectors of the secondary body and the spacecraft in

Figure 15.

Since in adimensional units the secondary body velocity has

length 1, the cosine theorem applied to velocity triangle reads:

v2∞ � 1 + v2sc − 2vsc cos β
� 1 + v2sc − 2vsc cos γ cos ip

(20)

In the second line the relationship between the angle β the

flight-path angle, γ and inclination ip of the spacecraft with

respect to the orbital plane of the primaries has been used. The

second term in Eq. 20 can be replaced with the vis-viva

equation for the spacecraft velocity, vsc, at encounter which

happens at radius 1:

v2sc � 2 1 − μ( ) − 1 − μ

ap
(21)

The vsc cos γ term in Eq 20 can be replaced using the definition of

the angular momentum

vsc cos γ �
���������������
1 − μ( )ap 1 − e2p( )√

(22)

Inserting both into Eq 20 yields:

v2∞ � 1 + 2 1 − μ( ) − 1 − μ

ap
− 2

���������������
1 − μ( )ap 1 − e2p( )√

cos ip (23)

Up to a constant, this is identical to the right-hand side of Eq. 19

(remember that n = 1 in adimensional units). Therefore, the

Jacobi integral can also be written as

CJ ≈ 3 − 2μ − v2∞ (24)

which is identical to Eq 4.

FIGURE 15
Definition of the pump angle, α, and auxiliary angle, β for an encounter at the secondary body in the CR3BP.
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